Lý thuyết Phép cộng các số nguyên Toán 6 Cánh diều — Không quảng cáo

Toán 6, giải toán lớp 6 Cánh diều Bài 3. Phép cộng các số nguyên


Lý thuyết Phép cộng các số nguyên Toán 6 Cánh diều

Lý thuyết Phép cộng các số nguyên Toán 6 Cánh diều ngắn gọn, đầy đủ, dễ hiểu

Phép cộng số nguyên

I. Cộng hai số nguyên cùng dấu

1. Phép cộng hai số nguyên dương

Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác \(0\).

Ví dụ: \(2 + 4 = 6\).

2. Phép cộng hai số nguyên âm

Để cộng hai số nguyên âm , ta làm như sau:

Bước 1: Bỏ dấu “-” trước mỗi số

Bước 2: Tính tổng của hai số nguyên dương nhận được ở Bước 1.

Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có tổng cần tìm.

Nhận xét:

- Tổng của hai số nguyên dương là số nguyên dương.

- Tổng của hai số nguyên âm là số nguyên âm.

Chú ý : Cho \(a,\,\,b\) là hai số nguyên dương, ta có:

\(\begin{array}{l}\left( { + a} \right) + \left( { + b} \right) = a + b\\\left( { - a} \right) + \left( { - b} \right) = - \left( {a + b} \right)\end{array}\)

Ví dụ:

\(\left( { - 3} \right) + \left( { - 5} \right) = - \left( {3 + 5} \right) = - 8\).

\(\left( { - 13} \right) + \left( { - 7} \right) = - \left( {13 + 7} \right) = - 20\).

II. Cộng hai số nguyên khác dấu

Để cộng hai số nguyên khác dấu , ta làm như sau:

Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại.

Bước 2. Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn.

Bước 3. Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm.

Nhận xét : Hai số nguyên đối nhau có tổng bằng \(0\): \(a + \left( { - a} \right) = 0\).

Chú ý :

- Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.

- Nếu số dương bằng số đối của số âm thì ta có tổng bằng \(0\).

- Nếu số dương bé hơn số đối của số âm thì ta có tổng âm.

Ví dụ:

a) \(\left( { - 8} \right) + 2 = - \left( {8 - 2} \right) = - 6.\)

b) \(17 + \left( { - 5} \right) = 17 - 5 = 12\).

c) \(\left( { - 5} \right) + 5 = 0\) (Do \( - 5\) và \(5\) là hai số đối nhau).

III. Tính chất của phép cộng các số nguyên

Phép cộng số nguyên có các tính chất:

- Giao hoán: \(a + b = b + a\);

- Kết hợp: \(\left( {a + b} \right) + c = a + \left( {b + c} \right);\)

- Cộng với số \(0\): \(a + 0 = 0 + a;\)

- Cộng với số đối: \(a + \left( { - a} \right) = \left( { - a} \right) + a = 0.\)

Ví dụ 1:

Tính một cách hợp lí: \(\left( { - 34} \right) + \left( { - 15} \right) + 34\)

Ta có:

\(\left( { - 34} \right) + \left( { - 15} \right) + 34\)

\(= \left( { - 15} \right) + \left( { - 34} \right) + 34\) (Tính chất giao hoán)

\( = \left( { - 15} \right) + \left[ {\left( { - 34} \right) + 34} \right]\) (Tính chất kết hợp)

\( = \left( { - 16} \right) + 0\) (cộng với số đối)

\( = - 16\)         (cộng với số 0).

Ví dụ 2:

Trong một ngày, nhiệt độ ở Mát-xcơ-va lúc 5 giờ là \( - {7^o}C\), đến 10 giờ tăng thêm \({6^o}C\) và lúc 12 giờ tăng thêm \({4^o}C\). Nhiệt độ ở Mát-xcơ-va lúc 12 giờ là bao nhiêu?

Giải

Nhiệt độ ở Mát-xcơ-va lúc 12 giờ là:

\(\left( { - 7} \right) + 6 + 4 = \left( { - 7} \right) + \left( {6 + 4} \right) = \left( { - 7} \right) + 10 = 10 - 7 = 3\,\,\left( {^oC} \right)\).


Cùng chủ đề:

Lý thuyết Ôn tập chương 2. Số nguyên
Lý thuyết Ôn tập chương 3. Hình học trực quan
Lý thuyết Phân số với tử và mẫu là số nguyên Toán 6 Cánh diều
Lý thuyết Phân tích một số ra thừa số nguyên tố Toán 6 Cánh diều
Lý thuyết Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên Toán 6 Cánh diều
Lý thuyết Phép cộng các số nguyên Toán 6 Cánh diều
Lý thuyết Phép cộng, phép trừ các số tự nhiên Toán 6 Cánh diều
Lý thuyết Phép cộng, phép trừ phân số Toán 6 Cánh diều
Lý thuyết Phép cộng, phép trừ số thập phân Toán 6 Cánh diều
Lý thuyết Phép nhân số nguyên Toán 6 Cánh diều
Lý thuyết Phép nhân, phép chia các số tự nhiên Toán 6 Cánh diều