Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 1. Dãy số Toán 11 Chân trời sáng tạo


Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tìm ({u_2},{u_3}) và dự đoán công thức số hạng tổng quát ({u_n}) của dãy số:

Đề bài

Tìm \({u_2},{u_3}\) và dự đoán công thức số hạng tổng quát \({u_n}\) của dãy số:

\(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \frac{{{u_n}}}{{1 + {u_n}}}\left( {n \ge 1} \right)\end{array} \right.\)

Phương pháp giải - Xem chi tiết

‒ Lần lượt thay giá trị \(n = 1;2;3\) vào biểu thức \({u_{n + 1}}\).

‒ Tìm điểm chung của các số hạng của dãy số \(\left( {{u_n}} \right)\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)

Suy ra, \({u_n} = \frac{1}{n}\)


Cùng chủ đề:

Bài 1 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 1 trang 40 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 41 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 1 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 48 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 1 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 1 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 1 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo