Bài 2.16 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
Viết năm số hạng đầu của mỗi dãy số (left( {{u_n}} right)) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng ({u_n} = {u_1}.{q^{n - 1}})
Đề bài
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng \({u_n} = {u_1}.{q^{n - 1}}\)
a) \({u_n} = 5n\)
b) \({u_n} = {5^n}\)
c) \({u_1} = 1,\;{u_n} = n.{u_{n - 1}}\),
d) \({u_1} = 1,\;{u_n} = 5.{u_{n - 1}}\)
Phương pháp giải - Xem chi tiết
Để chứng minh dãy số (\({u_n})\) gồm các số khác 0 là một cấp số nhân, hãy chứng minh tỉ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) không đổi.
Từ đó, xác định được công bội và số hạng tổng quát \({u_n}\).
Lời giải chi tiết
a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).
c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).
có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).