Bài 3. 2 trang 64 SGK Toán 11 tập 1 - Cùng khám phá — Không quảng cáo

Toán 11, giải toán 11 cùng khám phá Bài 1. Giới hạn của dãy số Toán 11 Cùng khám phá


Bài 3.2 trang 64 SGK Toán 11 tập 1 - Cùng khám phá

Tìm các giới hạn:

Đề bài

Tìm các giới hạn:

a, \(\lim ({n^3} - {n^4} + 2n)\)

b, \(\lim (\sqrt {{n^2} + 4}  + n)\)

c, \(\lim \frac{{{5^n} + 2}}{{{3^n} + {2^n}}}\)

Phương pháp giải - Xem chi tiết

Phân tích các biểu thức tính giới hạn thành tích trong đó có chứa n với số mũ lớn nhất và áp dụng các tình chất của giới hạn vô cực.

Lời giải chi tiết

a, Ta có:  \({n^3} - {n^4} + 2n = {n^4}.(\frac{1}{n} - 1 + \frac{2}{{{n^3}}})\)

Vì \(\lim ({n^4}) =  + \infty \) và \(\lim (\frac{1}{n} - 1 + \frac{2}{{{n^3}}}) =  - 1\) nên \(\lim ({n^3} - {n^4} + 2n) =  - \infty \).

b, Ta có: \((\sqrt {{n^2} + 4}  + n) = (n\sqrt {1 + \frac{4}{{{n^2}}}}  + n) = n(\sqrt {1 + \frac{4}{{{n^2}}}}  + 1)\)

Vì \(\lim n =  + \infty \) và \(\lim (\sqrt {1 + \frac{4}{{{n^2}}}}  + 1) = 2\) nên \(\lim (\sqrt {{n^2} + 4}  + n) =  + \infty \).

c, Ta có: \(\frac{{{5^n} + 2}}{{{3^n} + {2^n}}} = \frac{{1 + \frac{2}{{{5^n}}}}}{{{{\left( {\frac{3}{5}} \right)}^n} + {{\left( {\frac{2}{5}} \right)}^n}}}\)

Vì \(\lim (1 + \frac{2}{{{5^n}}}) = 1\) và \(\lim \left[ {{{\left( {\frac{3}{5}} \right)}^n} + {{\left( {\frac{4}{5}} \right)}^n}} \right] = 0\) nên \(\lim \frac{{{5^n} + 2}}{{{3^n} + {2^n}}} =  + \infty \).


Cùng chủ đề:

Bài 2. 24 trang 57 SGK Toán 11 tập 1 - Cùng khám phá
Bài 2. 25 trang 57 SGK Toán 11 tập 1 - Cùng khám phá
Bài 2. 26 trang 57 SGK Toán 11 tập 1 - Cùng khám phá
Bài 2. 27 trang 57 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 1 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 2 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 3 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 4 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 5 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 6 trang 73 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 7 trang 74 SGK Toán 11 tập 1 - Cùng khám phá