Bài 4. 6 trang 94 SGK Toán 11 tập 1 - Cùng khám phá — Không quảng cáo

Toán 11, giải toán 11 cùng khám phá Bài 1. Đường thẳng và mặt phẳng trong không gian Toán 1


Bài 4.6 trang 94 SGK Toán 11 tập 1 - Cùng khám phá

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SCD.

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SCD.

a) Tim giao tuyến của hai mặt phẳng (SBG) và (SAC).

b) Tìm giao điểm của đường thằng BG và mặt phẳng (SAC).

Phương pháp giải - Xem chi tiết

a) Tìm giao tuyến của hai mặt phẳng (P) và (Q)

Tìm 2 điểm chung A, B của 2 mặt phẳng đó. AB chính là giao tuyến của (P) và (Q).

b) Tìm giao điểm của đường thẳng d và mặt phẳng (P)

Cách 1: Nếu (P) có chứa đường thẳng cắt d

Cách 2: Nếu (P) không chứa đường thẳng cắt d

+ Bước 1: Tìm \(\left( Q \right) \supset d\) và \(\left( P \right) \cap \left( Q \right) = a\)

+ Bước 2: Tìm \(I = a \cap d \Rightarrow I = d \cap \left( P \right)\)

Lời giải chi tiết

a) Gọi E là trung điểm của CD

Mà G là trọng tâm tam giác SCD nên G nằm trên SE.

Mở rộng (SBG) thành (SBE)

Trong (ABCD), gọi \(AC \cap BE = F\)

\(\begin{array}{l}\left\{ \begin{array}{l}AC \subset \left( {SAC} \right)\\BE \subset \left( {SBE} \right)\end{array} \right.\\ \Rightarrow F \in \left( {SAC} \right) \cap \left( {SBE} \right)\end{array}\)

\(\begin{array}{l} \Rightarrow SF = \left( {SAC} \right) \cap \left( {SBE} \right)\\ \Rightarrow SF = \left( {SAC} \right) \cap \left( {SBG} \right)\end{array}\)

b) Trong (SBE), gọi \(SF \cap AC = I\)

Mà: \(\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {SBG} \right) = SF\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow I = BG \cap \left( {SAC} \right)\)


Cùng chủ đề:

Bài 4. 1 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 2 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 3 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 4 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 5 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 6 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 7 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 8 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 9 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 10 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 11 trang 100 SGK Toán 11 tập 1 - Cùng khám phá