Loading [MathJax]/jax/output/CommonHTML/jax.js

Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 4. Khoảng cách trong không gian Toán 11 Chân trời s


Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Cho hình lăng trụ tam giác đều (ABC.A'B'C') có (AB = a), góc giữa hai mặt phẳng (left( {A'BC} right)) và (left( {ABC} right)) bằng ({60^ circ }).

Đề bài

Cho hình lăng trụ tam giác đều ABC.ABCAB=a, góc giữa hai mặt phẳng (ABC)(ABC) bằng 60.

a) Tính khoảng cách giữa hai đáy của hình lăng trụ.

b) Tinh thể tích của khối lăng trụ.

Phương pháp giải - Xem chi tiết

‒ Cách tính khoảng cách giữa hai mặt phẳng song song: Tính khoảng cách một điểm nằm trên mặt phẳng này đến mặt phẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: V=Sh.

Lời giải chi tiết

a) Gọi I là trung điểm của BC.

Tam giác ABC đều AIBC

Tam giác ABC cân tại AAIBC

((ABC),(ABC))=(AI,AI)=^AIA=60

Tam giác ABC đều AI=AB32=a32

AA=AI.tan^AIA=3a2

b) SΔABC=AB234=a234

VABC.ABC=SΔABC.AA=3a338


Cùng chủ đề:

Bài 4 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 70 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 85 - Bài tập cuối chương 3 - SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo