Processing math: 0%

Bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 2. Giới hạn của hàm số Toán 11 Chân trời sáng tạo


Bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) lim;

b) \mathop {\lim }\limits_{x \to  - \infty } \left( {1 - {x^2}} \right);

c) \mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}}.

Phương pháp giải - Xem chi tiết

Bước 1: Đưa hàm số f\left( x \right) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Lời giải chi tiết

a) Áp dụng giới hạn một bên thường dùng,

Ta có : \left\{ \begin{array}{l}1 > 0\\x - \left( { - 1} \right) > 0,x \to  - {1^ + }\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{1}{{x - \left( { - 1} \right)}} =  + \infty

b) \mathop {\lim }\limits_{x \to  - \infty } \left( {1 - {x^2}} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^2}\left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } {x^2}.\mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right)

Ta có: \mathop {\lim }\limits_{x \to  - \infty } {x^2} =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to  - \infty } 1 = 0 - 1 =  - 1

\Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \left( {1 - {x^2}} \right) =  - \infty

c) \mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{ - x}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}}

Ta có: \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) =  - \mathop {\lim }\limits_{x \to {3^ - }} x =  - 3;\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}} =  - \infty

\Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} =  + \infty


Cùng chủ đề:

Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 70 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 85 - Bài tập cuối chương 3 - SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo