Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Cấp số nhân Toán 11 Chân trời sáng tạo


Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo

Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.

Đề bài

Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.

Phương pháp giải - Xem chi tiết

Chứng minh \({b^2} = ac\).

Lời giải chi tiết

Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng nên ta có:

\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b} \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).

Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.


Cùng chủ đề:

Bài 4 trang 49 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 4 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 4 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 70 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 4 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 4 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo