Loading [MathJax]/jax/output/CommonHTML/jax.js

Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 4. Khoảng cách trong không gian Toán 11 Chân trời s


Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo

Cho hình hộp đứng (ABCD.A'B'C'D') có cạnh bên (AA' = 2a) và đáy (ABCD) là hình thoi có (AB = a) và (AC = asqrt 3 ).

Đề bài

Cho hình hộp đứng ABCD.ABCD có cạnh bên AA=2a và đáy ABCD là hình thoi có AB=aAC=a3.

a) Tính khoảng cách giữa hai đường thẳng BDAA.

b) Tính thể tích của khối hộp.

Phương pháp giải - Xem chi tiết

‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:

Cách 1: Dựng đường vuông góc chung.

Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: V=Sh.

Lời giải chi tiết

a) Gọi O=ACBD

ABCD là hình thoi ACBDAOBD

AA(ABCD)AAAO

d(BD,AA)=AO=12AC=a32

b) Tam giác OAB vuông tại O

BO=AB2AO2=a2BD=2BO=aSABCD=12AC.BD=a232VABC.ABC=SABCD.AA=3a34


Cùng chủ đề:

Bài 6 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo