Processing math: 100%

Bài 6 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Hai mặt phẳng vuông góc Toán 11 Chân trời sáng tạo


Bài 6 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo

Kim tự tháp bằng kính tại bảo tàng Louvre ở Paris có dạng hình chóp tứ giác đều với chiều cao là 21,6 m và cạnh đáy dài 34 m.

Đề bài

Kim tự tháp bằng kính tại bảo tàng Louvre ở Paris có dạng hình chóp tứ giác đều với chiều cao là 21,6 m và cạnh đáy dài 34 m. Tính độ dài cạnh bên và diện tích xung quanh của kim tự tháp.

Phương pháp giải - Xem chi tiết

Sử dụng định lí Pitago.

Lời giải chi tiết

Mô hình hoá hình ảnh kim tự tháp bằng hình chóp tứ giác đều S.ABCDO là tâm của đáy. Kẻ SICD(ICD).

Ta có: SO=21,6;CD=34

AC=AB2+BC2=342OC=12AC=172

ΔSOC vuông tại OSC=SO2+OC232,3

Vậy độ dài cạnh bên bằng 32,3(m)

Tam giác SCD cân tại S

SI vừa là trung tuyến, vừa là đường cao của tam giác

I là trung điểm của CD.

O là trung điểm của AD

OI là đường trung bình của tam giác ACD

OI=12BC=17

SO(ABCD)SOOI

ΔSOI vuông tại OSI=SO2+OI227,5

SSCD=12CD.SI467,5

Diện tích xung quanh của kim tự tháp là: Sxq=4SSCD1870(m2)


Cùng chủ đề:

Bài 6 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 6 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 6 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo