Bài 8 trang 116 SGK Toán 11 tập 2 - Cánh Diều
Hình 101 là hình chụp đền Kukulcan, là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza
Đề bài
Hình 101 là hình chụp đền Kukulcan, là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza, Mexico, được người Maya xây vào khoảng từ thế kỉ IX đến thế kỉ XII. Phần thân của đền, không bao gồm ngôi đền nằm phía trên, có dạng một khối chóp cụt tứ giác đều (không tính cầu thang và coi các mặt bên là phẳng) với độ dài đáy dưới là 55,3 m, chiều cao là 24 m, góc giữa cạnh bên và mặt phẳng đáy là khoảng \({47^ \circ }\).
( Nguồn: https://vi.wikipedia.org )
Tính thể tích phần thân ngôi đền có dạng khối chóp cụt tứ giác đều đó theo đơn vị mét khối (làm tròn kết quả đến hàng phần trăm).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
Lời giải chi tiết
Mô hình hoá phần thân của đền bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 55,3;OO' = 24;\left( {CC',\left( {ABCD} \right)} \right) = {47^ \circ }\).
\(ABCD\) là hình vuông
\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = 55,3\sqrt 2 \Rightarrow CO = \frac{1}{2}AC = 27,65\sqrt 2 \)
Kẻ \(C'H \bot OC\left( {H \in OC} \right) \Rightarrow C'H\parallel OO' \Rightarrow C'H \bot \left( {ABCD} \right)\)
\( \Rightarrow \left( {CC',\left( {ABCD} \right)} \right) = \left( {CC',CH} \right) = \widehat {HCC'} = {47^ \circ }\)
\(OHC'O'\) là hình chữ nhật \( \Rightarrow OO' = C'H = 24,CH = O'C'\)
\(\Delta CC'H\) vuông tại \(H \Rightarrow CH = \frac{{C'H}}{{\tan \widehat {HCC'}}} = \frac{{24}}{{\tan {{47}^ \circ }}} \approx 22,38\)
\(O'C' = OH = CO - CH \approx 16,72 \Rightarrow A'C' = 2O'C' = 33,44\)
\(A'B'C'D'\) là hình vuông \( \Rightarrow A'B' = \frac{{A'C'}}{{\sqrt 2 }} \approx 23,65\)
Diện tích đáy lớn là: \(S = A{B^2} = 55,{3^2} = 3058,09\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = A'B{'^2} = 23,{65^2} = 545,2225\left( {{m^2}} \right)\)
Thể tích hình chóp cụt là:
\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3}.24\left( {3058,09 + \sqrt {3058,09.545,2225} + 545,2225} \right) \approx 39156,53\left( {{m^3}} \right)\)
Vậy thể tích phần thân ngôi đền có dạng khối chóp cụt tứ giác đều đó là \(39156,53\left( {{m^3}} \right)\)