Câu 16 trang 51 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 1: Đại cương về đường thẳng và mặt phẳng


Câu 16 trang 51 SGK Hình học 11 Nâng cao

Cho hình chóp S.ABCD. Gọi M là một điểm nằm trong tam giác SCD

Đề bài

Cho hình chóp S.ABCD. Gọi M là một điểm nằm trong tam giác SCD

a. Tìm giao tuyến của hai mặt phẳng (SMB) và (SAC)

b. Tìm giao điểm của đường thẳng BM và mp(SAC)

c. Xác định thiết diện của hình chóp khi cắt bởi mp(ABM)

Lời giải chi tiết

a. Tìm (SBM) ∩ (SAC)

Dễ thấy \(S \in \left( {SBM} \right) \cap \left( {SAC} \right)\)

Trong (SCD), gọi N = SM ∩ CD

Trong mp(ABCD) gọi O = BN ∩ AC

\( \Rightarrow \left\{ \begin{array}{l} O \in BN \subset \left( {SBM} \right)\\ O \in AC \subset \left( {SAC} \right) \end{array} \right. \)\(\Rightarrow O \in \left( {SBM} \right) \cap \left( {SAC} \right)\)

Vậy SO = (SBM) ∩ (SAC)

b. Tìm BM ∩ (SAC)

Chọn mặt phẳng phụ chứa BM là (SBN)

Ta có: (SBN) ∩ (SAC) = SO (theo câu a)

Gọi I = SO ∩ BM thì

\(\left\{ \begin{array}{l} I \in SO \subset \left( {SAC} \right)\\ I \in BM \end{array} \right. \)\(\Rightarrow I = BM \cap \left( {SAC} \right)\)

c. Trong mp(SAC) gọi P = AI ∩ SC

Trong mp(SCD), PM cắt SD tại Q.

Thiết diện của hình chóp khi cắt bởi mp(ABM) là tứ giác ABPQ.


Cùng chủ đề:

Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 19 SGK Hình học 11 Nâng cao
Câu 16 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 51 SGK Hình học 11 Nâng cao
Câu 16 trang 64 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 103 SGK Hình học 11 Nâng cao
Câu 16 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 204 SGK Đại số và Giải tích 11 Nâng cao