Đề số 7 - Đề kiểm tra học kì 1 - Toán 9
Tải vềĐáp án và lời giải chi tiết Đề số 7 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 9
Đề bài
Bài 1: (2 điểm)
a) Tính chu vi tam giác ABC biết độ dài 3 cạnh là \(AB = 5\sqrt 2 \left( {cm} \right),AC = \sqrt {32} \left( {cm} \right)\),\(BC = \sqrt {98} \left( {cm} \right)\). (Không yêu cầu vẽ hình)
b) Thu gọn: \(B = \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} - \dfrac{6}{{\sqrt 7 - 1}}\).
Bài 2: (3,0 điểm) Cho đường thẳng \(\left( {{d_1}} \right):y = - 3x + 1\) và đường thẳng \(\left( {{d_2}} \right):y = x - 3\).
a)Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng mặt phẳng tọa độ \(Oxy\).
b)Tìm tọa độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) bằng phép tính.
c)Tìm \(m\) để đường thẳng \(\left( D \right):y = \left( {2m + 3} \right)x - 5\) song song vơi đường thẳng \(\left( {{d_1}} \right)\).
Bài 3: (1 điểm) Trong một tòa nhà ngoài thang máy người ta còn xây thêm một cầu thang đi bộ. Từ tầng 1 đến tầng 2 có 30 bậc thang. Các tầng còn lại cứ hai tầng liên tiếp cách nhau 21 bậc thang. Do thang máy bị hư nên bạn Vy đi bộ bắt đầu từ tầng 1 về căn hộ của mình. Tổng số bậc thang Vy đã đi là 135. Hỏi căn hộ của Vy ở tầng thứ bao nhiêu của tòa nhà?
Bài 4: (1 điểm) Tàu ngầm đang ở trên mặt biển bỗng đột ngột lặn xuống theo phương tạo với mặt nước biển một góc\({21^o}\). Nếu tàu chuyển động theo phương lặn xuống được 300m thì nó ở độ sâu bao nhiêu? Khi đó khoảng cách theo phương nằm ngang so với nơi xuất phát là bao nhiêu mét ? (kết quả làm tròn đến mét)
Bài 5: (3,0 điểm) Cho nửa đường tròn \(\left( {O;R} \right)\) đường kính AB . Vẽ các tiếp tuyến \(Ax\) và \(By\) của đường tròn \(\left( {O;R} \right)\).
a)Chứng minh: \(Ax//By\).
b)Trên \(\left( {O;R} \right)\)lấy điểm M . Tiếp tuyến tại M của đường tròn \(\left( {O;R} \right)\)lần lượt cắt \(Ax\) và \(By\) tại D và E . Chứng minh: \(DE = DA + BE\).
c)Chứng minh: \(\angle DOE = {90^o}\) và \(DA.BE = {R^2}\).
LG bài 1
Lời giải chi tiết:
a)Tính chu vi tam giác ABC biết độ dài 3 cạnh là \(AB = 5\sqrt 2 \left( {cm} \right),AC = \sqrt {32} \left( {cm} \right)\) , \(BC = \sqrt {98} \left( {cm} \right)\) . (Không yêu cầu vẽ hình)
Chu vi của tam giác ABC là:
\(\begin{array}{l}AB + AC + BC = 5\sqrt 2 + \sqrt {32} + \sqrt {98} = 5\sqrt 2 + \sqrt {{4^2}.2} + \sqrt {{7^2}.2} \\ = 5\sqrt 2 + 4\sqrt 2 + 7\sqrt 2 = 16\sqrt 2 .\end{array}\)
Vậy tam giác có chu vi là \(16\sqrt 2 \).\(\)
b)Thu gọn: \(B = \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} - \dfrac{6}{{\sqrt 7 - 1}}\) .
\(\begin{array}{l}B = \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} - \dfrac{6}{{\sqrt 7 - 1}} \\\;\;\;= \left| {\sqrt 7 - 1} \right| - \dfrac{{6\left( {\sqrt 7 + 1} \right)}}{{\left( {\sqrt 7 - 1} \right)\left( {\sqrt 7 + 1} \right)}}\\\;\;\; = \sqrt 7 - 1 - \dfrac{{6\left( {\sqrt 7 + 1} \right)}}{{{{\left( {\sqrt 7 } \right)}^2} - 1}} \\\;\;\;= \sqrt 7 - 1 - \left( {\sqrt 7 + 1} \right)\\\;\;\; = \sqrt 7 - 1 - \sqrt 7 - 1 = - 2.\end{array}\)
Vậy \(B = - 2\).
LG bài 2
Lời giải chi tiết:
Cho đường thẳng \(\left( {{d_1}} \right):y = - 3x + 1\) và đường thẳng \(\left( {{d_2}} \right):y = x - 3\) .
a)Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng mặt phẳng tọa độ \(Oxy\) .
Ta có bảng giá trị:
x |
0 |
1 |
\(y = - 3x + 1\) |
1 |
-2 |
\(y = x - 3\) |
-3 |
-2 |
Vậy đường thẳng \(\left( {{d_1}} \right)\) đi qua điểm \(\left( {0;\;1} \right),\;\;\left( {1; - 2} \right)\) và đường thẳng \(\left( {{d_2}} \right)\) đi qua điểm \(\left( {0; - 3} \right),\;\;\left( {1; - 2} \right).\)
Từ đó ta có đồ thị của hai hàm số:
b)Tìm tọa độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) bằng phép tính.
Hoành độ giao điểm của hai đường thẳng là nghiệm của phương trình :
\( - 3x + 1 = x - 3 \Leftrightarrow 4x = 4 \Leftrightarrow x = 1\).
Với \(x = 1 \Rightarrow y = x - 3 = 1 - 3 = - 2\)
Vậy tọa độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\)là: \(A\left( {1; - 2} \right)\).\(\)
c)Tìm \(m\) để đường thẳng \(\left( D \right):y = \left( {2m + 3} \right)x - 5\) song song với đường thẳng \(\left( {{d_1}} \right)\) .
Hai đường thẳng song song khi chúng có cùng hệ số góc và chúng không trùng nhau. Suy ra để
đường thẳng \(\left( D \right):y = \left( {2m + 3} \right)x - 5\) song song với đường thẳng \(\left( {{d_1}} \right)\) thì:
\(\left\{ \begin{array}{l}2m + 3 = - 3\\ - 5 \ne 1\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}2m = - 6\\ - 5 \ne 1\end{array} \right. \Leftrightarrow m = - 3\).
Vậy \(m = - 3\) là giá trị cần tìm.
LG bài 3
Lời giải chi tiết:
Bài 3:Trong một tòa nhà ngoài thang máy người ta còn xây thêm một cầu thang đi bộ. Từ tầng 1 đến tầng 2 có 30 bậc thang. Các tầng còn lại cứ hai tầng liên tiếp cách nhau 21 bậc thang. Do thang máy bị hư nên bạn Vy đi bộ bắt đầu từ tầng 1 về căn hộ của mình. Tổng số bậc thang Vy đã đi là 135. Hỏi căn hộ của Vy ở tầng thứ bao nhiêu của tòa nhà?
Giả sử nhà bạn Vy ở tầng thứ \(n\) của tòa nhà\(\left( {n > 1,\;n \in {N^*}} \right).\)
Suy ra sốtầng mà bạn Vy phải đi là \(n - 1\)tầng.
\( \Rightarrow \)số tầng mà bạn Vy phải đi có 21 bậc thang là: \(n - 2\) (do cầu thang tầng 1 có 30 bậc thang)
Suy ra số bậc thang mà bạn Vy phải đi bộ là: \(30 + 21.\left( {n - 2} \right)\) bậc.
Theo đề bài ta có phương trình:
\(30 + 21\left( {n - 2} \right) = 135 \Leftrightarrow n - 2 = 5 \Leftrightarrow n = 7\;\;\left( {tm} \right)\).
Vậy nhà bạn Vy ở tầng 7 của tòa nhà.\(\)
LG bài 4
Lời giải chi tiết:
Bài 4:Tàu ngầm đang ở trên mặt biển bỗng đột ngột lặn xuống theo phương tạo với mặt nước biển một góc \({21^o}\) . Nếu tàu chuyển động theo phương lặn xuống được 300m thì nó ở độ sâu bao nhiêu? Khi đó khoảng cách theo phương nằm ngang so với nơi xuất phát là bao nhiêu mét ? (kết quả làm tròn đến mét)
Coi mặt biển là một mặt phẳng, theo đề bài ta có hình vẽ minh họa:
Trong hình vẽ ta có:
+) Đoạn AC là quãng đường tàu di chuyển trong quá trình lặn,
+) Đoạn BC là độ sâu mà tàu lặn được.
+) Đoạn AB là khoảng cách theo phương ngang tính từ vị trí xuất phát tới vị trí của tàu sau khi lặn.
+) \(\alpha \) là góc tạo bởi quãng đường tàu chuyển động và mặt biển.
Xét tam giác vuông ABC vuông tại B có:
+) \(\sin \alpha = \dfrac{{BC}}{{AC}}\) \( \Rightarrow BC = AC.\sin \alpha = 300.\sin {21^o} \approx 107\left( m \right)\)
+) \(\cos \alpha = \dfrac{{AB}}{{AC}}\) \( \Rightarrow AB = AC.\cos \alpha = 300.cos{21^o} = 280\left( m \right)\)
Vậy tàu lặn xuống độ sâu 107 (m) và khoảng cách theo phương ngang từ vị trí ban đầu tới vị trí sau khi lặn là 280 (m).
LG bài 6
Lời giải chi tiết:
Bài 5:Cho nửa đường tròn \(\left( {O;R} \right)\) đường kính AB . Vẽ các tiếp tuyến \(Ax\) và \(By\) của đường tròn \(\left( {O;R} \right)\) .
a)Chứng minh: \(Ax//By\) .
Xét đường tròn \(\left( {O;R} \right)\)có \(Ax\) là tiếp tuyến với A là tiếp điểm.
\( \Rightarrow Ax \bot OA\)(tính chất tiếp tuyến)\( \Rightarrow Ax \bot AB\)(do OA nằm trên AB )\(\)
Chứng minh tương tự có \(By \bot AB\)
Suy ra \(Ax//By\) (do cùng vuông góc với AB )(đpcm).\(\)
b)Trên \(\left( {O;R} \right)\) lấy điểm M . Tiếp tuyến tại M của đường tròn \(\left( {O;R} \right)\) lần lượt cắt \(Ax\) và \(By\) tại D và E . Chứng minh: \(DE = DA + BE\) .
Xét \(\left( {O;R} \right)\)có DM , AD là tiếp tuyến với A , M là tiếp điểm
\( \Rightarrow AD = DM\)(tính chất tiếp tuyến) (1)
Tương tự ta có: \(ME = BE\) (2)
Vì M nằm trên đoạn DE nên ta có: \(DE = DM + ME\) (3)
Từ (1) , (2) , (3) suy ra\(DE = DA + BE\)(đpcm).
c)Chứng minh: \(\angle DOE = {90^o}\) và \(DA.BE = {R^2}\) .
+)Chứng minh \(\angle DOE = {90^o}\)
Có: \(DM = DA\)(cmt), suy ra D cách đều A và M , suy ra D nằm trên đường trung trực của AM
Mà có: \(OA = OM\) (cùng là bán kính) suy ra O cách đều A và M , suy ra O nằm trên trung trực của AM
Suy ra OD là trung trực của AM , suy ra \(OD \bot AM.\)
Chứng minh tương tự có \(OE \bot MB.\)
Xét tứ giác MCOF có:
+) \(\angle MCO = {90^o}\) (do \(OD \bot AM\))
+) \(\angle MFO = {90^o}\)(do \(OE \bot MB\))
+) \(\angle CMF = {90^o}\)(do là góc nội tiếp chắn nửa đường tròn)
Suy ra MCOF là hình chữ nhật (dhnb), suy ra \(\angle DOE = {90^o}\). (đpcm)
+) Chứng minh \(DA.BE = {R^2}\).
Xét tam giác DOE vuông tại O có: OM là đường cao (do DE là tiếp tuyến nên OM vuông góc với DE )
\( \Rightarrow ME.MD = O{M^2}\)
Mà có: \(\left\{ \begin{array}{l}DA = MD\\BE = ME\end{array} \right.\) (cmt)
Suy ra \(DA.BE = {R^2}\) (đpcm).