Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 11
Phần trắc nghiệm (3 điểm)
Đề bài
Khẳng định nào sau đây sai:
-
A.
\(0,\left( {001} \right) \in \mathbb{Q}\) .
-
B.
\(\frac{7}{{33}} \in \mathbb{Q}\).
-
C.
\( - {\rm{ }}2\frac{3}{5} \in \mathbb{Q}\).
-
D.
\(\sqrt 8 \in \mathbb{Q}\).
Số đối của \(\frac{5}{6}\) là:
-
A.
\(\frac{6}{5}\) .
-
B.
\( - \frac{6}{5}\).
-
C.
\(\sqrt {\frac{5}{6}} \).
-
D.
\( - {\rm{ }}\frac{5}{6}\).
Căn bậc hai số học của 196 là:
-
A.
98 .
-
B.
– 14.
-
C.
14.
-
D.
\( - {\rm{ }}\sqrt {196} \).
Số nào là số vô tỉ trong các số sau:
-
A.
\(\frac{5}{{11}}\) .
-
B.
\(\sqrt {\frac{1}{9}} \).
-
C.
\(\sqrt {12} \).
-
D.
0.
Cho \(\widehat {{\rm{xOy}}} = {70^0}\)và tia Ot là tia phân giác của \(\widehat {{\rm{xOy}}}\). Số đo \(\widehat {{\rm{xOt}}}\) bằng:
-
A.
35 0 .
-
B.
40 0 .
-
C.
70 0 .
-
D.
110 0 .
Cho hình vẽ bên, biết \({\widehat {\rm{O}}_1} = {60^0}\). Số đo \({\widehat {\rm{O}}_3}\) là:
-
A.
30 0 .
-
B.
50 0 .
-
C.
60 0 .
-
D.
120 0 .
-
A.
DHKF là mặt đáy của hình lăng trụ.
-
B.
DE là cạnh bên của hình lăng trụ.
-
C.
DEF và HGK là hai mặt bên của hình lăng trụ.
-
D.
DEF và HGK là hai mặt đáy của hình lăng trụ.
-
A.
Các mặt đáy song song với nhau.
-
B.
Các mặt đáy là tam giác.
-
C.
Các mặt đáy là tứ giác.
-
D.
Các mặt bên là hình chữ nhật.
Trong các dữ liệu sau, dữ liệu nào không phải là dữ liệu định lượng?
-
A.
Chiều cao của một số học sinh trong lớp (đơn vị tính là cm): 145; 150; 155; 160; 165; 170; …
-
B.
Quốc tịch của các học sinh trong một trường quốc tế: Việt Nam, Lào, Campuchia; …
-
C.
Số học sinh đeo kính trong một số lớp học (đơn vị tính là học sinh): 20; 10; 15;…
-
D.
Cân nặng của trẻ sơ sinh (đơn vị tính là kg): 2800; 3000; 32000; 3500; …
Theo số liệu biểu đồ hình quạt tròn ở hình bên thì tỉ lệ phần trăm đi xe đạp đến trường của các em học sinh ở một trường THCS là:
-
A.
40 %.
-
B.
20 %.
-
C.
25 %.
-
D.
15 %.
Kết quả tìm hiểu về sở thích chơi game của một số học sinh trong một trường
THCS được ghi bởi bảng thống kê sau. Hãy cho biết nhiều học sinh lựa chọn loại nào nhất?
-
A.
Thích.
-
B.
Rất thích.
-
C.
Không thích.
-
D.
Thích ít.
Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) xếp loại học lực giữa kì I của học sinh lớp 7A. Hỏi học sinh đạt loại gì là nhiều nhất?
-
A.
Giỏi.
-
B.
Khá.
-
C.
Trung bình.
-
D.
Yếu.
Lời giải và đáp án
Khẳng định nào sau đây sai:
-
A.
\(0,\left( {001} \right) \in \mathbb{Q}\) .
-
B.
\(\frac{7}{{33}} \in \mathbb{Q}\).
-
C.
\( - {\rm{ }}2\frac{3}{5} \in \mathbb{Q}\).
-
D.
\(\sqrt 8 \in \mathbb{Q}\).
Đáp án : D
Dựa vào kiến thức về số hữu tỉ.
+) \(0,\left( {001} \right) = \frac{1}{{999}} \in \mathbb{Q}\) nên A đúng.
+) \(\frac{7}{{33}} \in \mathbb{Q}\) nên B đúng.
+) \( - {\rm{ }}2\frac{3}{5} = - \frac{{13}}{5} \in \mathbb{Q}\) nên C đúng.
+) \(\sqrt 8 \) là số vô tỉ \( \Rightarrow \sqrt 8 \notin \mathbb{Q}\) nên D sai.
Số đối của \(\frac{5}{6}\) là:
-
A.
\(\frac{6}{5}\) .
-
B.
\( - \frac{6}{5}\).
-
C.
\(\sqrt {\frac{5}{6}} \).
-
D.
\( - {\rm{ }}\frac{5}{6}\).
Đáp án : D
Dựa vào khái niệm số đối.
Số đối của \(\frac{5}{6}\) là \( - \frac{5}{6}\).
Căn bậc hai số học của 196 là:
-
A.
98 .
-
B.
– 14.
-
C.
14.
-
D.
\( - {\rm{ }}\sqrt {196} \).
Đáp án : C
Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).
Căn bậc hai số học của 196 là \(\sqrt {196} = 14\).
Số nào là số vô tỉ trong các số sau:
-
A.
\(\frac{5}{{11}}\) .
-
B.
\(\sqrt {\frac{1}{9}} \).
-
C.
\(\sqrt {12} \).
-
D.
0.
Đáp án : C
Số vô tỉ được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn.
Ta có: \(\sqrt {\frac{1}{9}} = \frac{1}{3};0 = \frac{0}{1}\). Các số \(\frac{5}{{11}};\sqrt {\frac{1}{9}} ;0\) là số hữu tỉ nên không phải là số vô tỉ.
Vậy chỉ có \(\sqrt {12} \) là số vô tỉ.
Cho \(\widehat {{\rm{xOy}}} = {70^0}\)và tia Ot là tia phân giác của \(\widehat {{\rm{xOy}}}\). Số đo \(\widehat {{\rm{xOt}}}\) bằng:
-
A.
35 0 .
-
B.
40 0 .
-
C.
70 0 .
-
D.
110 0 .
Đáp án : A
Dựa vào kiến thức về tia phân giác.
Vì Ot là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}\widehat {xOy} = \frac{1}{2}{.70^0} = {35^0}\).
Cho hình vẽ bên, biết \({\widehat {\rm{O}}_1} = {60^0}\). Số đo \({\widehat {\rm{O}}_3}\) là:
-
A.
30 0 .
-
B.
50 0 .
-
C.
60 0 .
-
D.
120 0 .
Đáp án : C
Góc \({O_1}\) và góc \({O_3}\) là hai góc đối đỉnh nên \(\widehat {{O_1}} = \widehat {{O_3}}\).
Vì góc \({O_1}\) và góc \({O_3}\) là hai góc đối đỉnh nên \(\widehat {{O_1}} = \widehat {{O_3}}\). Mà \(\widehat {{O_1}} = {60^0}\) nên \(\widehat {{O_3}} = {60^0}\).
-
A.
DHKF là mặt đáy của hình lăng trụ.
-
B.
DE là cạnh bên của hình lăng trụ.
-
C.
DEF và HGK là hai mặt bên của hình lăng trụ.
-
D.
DEF và HGK là hai mặt đáy của hình lăng trụ.
Đáp án : D
Dựa vào khái niệm hình lăng trụ.
Hình lăng trụ DEF.HGK có DEF và HGK là hai mặt đáy của hình lăng trụ nên chỉ có đáp án D đúng.
-
A.
Các mặt đáy song song với nhau.
-
B.
Các mặt đáy là tam giác.
-
C.
Các mặt đáy là tứ giác.
-
D.
Các mặt bên là hình chữ nhật.
Đáp án : B
Quan sát hình vẽ để xác định.
Hình trên là hình lăng trụ đứng tứ giác nên hai mặt đáy song song với nhau nên A đúng.
Hai mặt đáy ABCD và A’B’C’D’ là hình tứ giác nên B sai, C đúng.
Các mặt bên của hình lăng trụ đứng tứ giác là hình chữ nhật nên D đúng.
Trong các dữ liệu sau, dữ liệu nào không phải là dữ liệu định lượng?
-
A.
Chiều cao của một số học sinh trong lớp (đơn vị tính là cm): 145; 150; 155; 160; 165; 170; …
-
B.
Quốc tịch của các học sinh trong một trường quốc tế: Việt Nam, Lào, Campuchia; …
-
C.
Số học sinh đeo kính trong một số lớp học (đơn vị tính là học sinh): 20; 10; 15;…
-
D.
Cân nặng của trẻ sơ sinh (đơn vị tính là kg): 2800; 3000; 32000; 3500; …
Đáp án : B
Dựa vào phân loại dữ liệu: Dữ liệu được chia thành hai loại: dữ liệu định tính và dữ liệu định lượng.
Trong các dữ liệu trên, chỉ có dữ liệu quốc tích của các học sinh trong trường quốc tế không phải là dữ liệu định lượng.
Theo số liệu biểu đồ hình quạt tròn ở hình bên thì tỉ lệ phần trăm đi xe đạp đến trường của các em học sinh ở một trường THCS là:
-
A.
40 %.
-
B.
20 %.
-
C.
25 %.
-
D.
15 %.
Đáp án : A
Quan sát biểu đồ để xác định.
Quan sát biểu đồ, tỉ lệ phần trăm học sinh đi xe đạp đến trường là 40%.
Kết quả tìm hiểu về sở thích chơi game của một số học sinh trong một trường
THCS được ghi bởi bảng thống kê sau. Hãy cho biết nhiều học sinh lựa chọn loại nào nhất?
-
A.
Thích.
-
B.
Rất thích.
-
C.
Không thích.
-
D.
Thích ít.
Đáp án : A
Quan sát bảng thống kê, lập bảng số liệu biểu thị sở thích chơi game của các học sinh đó theo số lượng để biết học sinh lựa chọn loại nào nhiều nhất.
Ta có bảng số liệu sở thích chơi game của các học sinh theo số lượng như sau:
Quan sát bảng số liệu trên, ta thấy học sinh lựa chọn “Thích” có số lượng nhiều nhất.
Biểu đồ hình quạt tròn ở hình bên biểu diễn kết quả thống kê (tính theo tỉ số phần trăm) xếp loại học lực giữa kì I của học sinh lớp 7A. Hỏi học sinh đạt loại gì là nhiều nhất?
-
A.
Giỏi.
-
B.
Khá.
-
C.
Trung bình.
-
D.
Yếu.
Đáp án : B
Quan sát biểu đồ để xác định.
Quan sát biểu đồ trên, ta thấy số học sinh khá chiếm tỉ lệ nhiều nhất (40%).
Sử dụng các quy tắc thực hiện phép tính.
a) \({\left( {\frac{2}{3} - 1} \right)^2} - \frac{3}{5}:\frac{9}{{10}} + {1^{2022}}\)
\(\begin{array}{l} = {\left( {\frac{2}{3} - \frac{3}{3}} \right)^2} - \frac{3}{5} \cdot \frac{{10}}{9} + 1\\ = {\left( {\frac{{ - 1}}{3}} \right)^2} - \frac{2}{3} + 1\\{\rm{ = }}\frac{1}{9} - \frac{6}{9} + \frac{9}{9}\\ = \frac{4}{9}\end{array}\)
b) \(\frac{8}{7} \cdot \left| {\frac{{ - 3}}{5}} \right| + \frac{8}{7} \cdot \sqrt {\frac{4}{{25}}} - \frac{{\sqrt 9 }}{4}\)
\(\begin{array}{l} = \frac{8}{7} \cdot \frac{3}{5} + \frac{8}{7} \cdot \frac{2}{5} - \frac{3}{4}\\ = \frac{8}{7} \cdot \left( {\frac{3}{5} + \frac{2}{5}} \right) - \frac{3}{4} = \frac{8}{7} \cdot 1 - \frac{3}{4}\\ = \frac{{32}}{{28}} - \frac{{21}}{{28}} = \frac{{11}}{{28}}\end{array}\)
a) Dựa vào quy tắc chuyển vế để tìm x.
b) Chia hai trường hợp: \(\frac{1}{2} - x = \frac{4}{5}\) hoặc \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\).
a) \(x + 0,75 = \frac{2}{3}\)
\(\begin{array}{l}x + \frac{3}{4} = \frac{2}{3}\\x = \frac{2}{3} - \frac{3}{4}\\x = \frac{{ - 1}}{{12}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{12}}\).
b) \(\left| {\frac{1}{2} - x} \right| = \frac{4}{5}\) thì \(\frac{1}{2} - x = \frac{4}{5}\) hoặc \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\).
TH1. \(\frac{1}{2} - x = \frac{4}{5}\)
\(\begin{array}{l}x = \frac{1}{2} - \frac{4}{5}\\x = \frac{{ - 3}}{{10}}\end{array}\)
TH2. \(\frac{1}{2} - x = \frac{{ - {\rm{ }}4}}{5}\)
\(\begin{array}{l}x = \frac{1}{2} + \frac{4}{5}\\x = \frac{{13}}{{10}}\end{array}\)
Vậy \(x \in \left\{ {\frac{{ - 3}}{{10}};\frac{{13}}{{10}}} \right\}\).
Dựa vào cách làm tròn số với độ chính xác cho trước.
Ta có: 331 698 \( \approx \) 332 000.
Vậy diện tích nước Việt Nam được làm tròn đến hàng nghìn là khoảng 332 000 km 2 .
a) Dựa vào công thức tính diện tích xung quanh của hình hộp chữ nhật.
Diện tích phần cần sơn là diện tích xung quanh + diện tích một đáy của tủ.
b) Chi phí sơn tủ = diện tích phần cần sơn . chi phí sơn mỗi m 2 tủ. (nhớ đổi đơn vị m 2 ).
a) Diện tích xung quanh của cây tủ là: (60 + 70).2.200 = 52 000 (cm 2 )
Diện tích phần cần sơn là: (60 + 70).2.200 + 60.70 = 52 000 + 4 200 = 56 200 (cm 2 )
b) Đổi: 56 200 (cm 2 ) = 5,62 (m 2 )
Chi phí để sơn tất cả các mặt của cây tủ (trừ mặt tiếp giáp với mặt đất không sơn) là: 5,62 . 100 000 = 562 000 (đồng)
a) Chứng minh a và b cùng vuông góc với m nên song song với nhau.
b) Dựa vào kiến thức về hai góc đối, hai đường thẳng song song để tính số đo \({\widehat {\rm{D}}_1}\) và \(\widehat {{\rm{ ACD}}}\).
a) Vì \(m \bot a;m \bot b\) (gt) nên a // b (đpcm).
b) Ta có: \(\widehat {{D_1}} = \widehat {{D_3}} = {110^0}\) (hai góc đối đỉnh).
Ta có: a // b (cmt) suy ra:\({\rm{ }}{\widehat {\rm{C}}_2} = {\widehat {\rm{D}}_3} = {110^0}\)(2 góc so le trong)
Ta có:\({\rm{ }}{\widehat {\rm{C}}_2} + {\widehat {\rm{C}}_1} = {180^0}\) (2 góc kề bù)
\(\begin{array}{l}{110^0} + {\widehat {\rm{C}}_1} = {180^0}\\{\widehat {\rm{C}}_1} = {180^0} - {110^0} = {70^0}\end{array}\)
Vậy \(\widehat {{D_1}} = {110^0};\widehat {{C_2}} = {70^0}\).