Đề thi học kì 1 Toán 7 Chân trời sáng tạo - Đề số 12
Phần trắc nghiệm (3 điểm)
Đề bài
Số đối của số \( - \frac{3}{5}\) là:
-
A.
\( - \frac{3}{5}\) .
-
B.
\(\frac{3}{5}\).
-
C.
\(\frac{5}{3}\).
-
D.
\( - \frac{5}{3}\).
Căn bậc hai số học của 121 là:
-
A.
10 .
-
B.
11.
-
C.
12.
-
D.
13.
Số nào là số vô tỉ trong các số sau:
-
A.
\(\frac{4}{5}\) .
-
B.
\( - \sqrt 7 \).
-
C.
\(0\).
-
D.
\(3,15\).
Cho \(\left| x \right|\) = 16 thì giá trị của x là:
-
A.
x = 16 .
-
B.
x = – 16.
-
C.
x = 4 hoặc x = – 4.
-
D.
x = 16 hoặc x = – 16.
Cho hai đường thẳng xy và zt cắt nhau như hình vẽ, biết \(\widehat {xOz} = {140^0}\). Tính số đo \(\widehat {zOy}\):
-
A.
\({140^0}\).
-
B.
\({150^0}\).
-
C.
\({40^0}\).
-
D.
\({50^0}\).
Cho hình lập phương có các kích thước như hình vẽ. Diện tích xung quanh của hình lập phương đó là:
-
A.
6400cm 2 .
-
B.
160cm 2 .
-
C.
9600cm 2 .
-
D.
64000cm 2 .
Cho hình lăng trụ đứng tam giác \(ABC.A'B'C'\) có cạnh \(A'B' = 3\,{\rm{cm}}\),\({B^\prime }{C^\prime } = 5\,{\rm{cm}}\), \(A'C' = 6\,{\rm{cm}}\), \(AA' = 7\:{\rm{cm}}\).
Diện tích xung quanh của hình lăng trụ đứng là:
-
A.
\(98c{m^2}\).
-
B.
\(105c{m^2}\).
-
C.
\(210c{m^2}\).
-
D.
\(90c{m^2}\).
Nhà bạn An đang tiến hành làm một con dốc bằng bê tông để dẫn xe vào nhà có hình là một lăng trụ đứng tam giác có kích thước như hình dưới đây. Tính thể tích của con dốc.
-
A.
45.
-
B.
\(\frac{1}{3}\).
-
C.
5.
-
D.
15.
Cho \(\widehat {xOy} = {120^0}\). Gọi Ot là tia phân giác của \(\widehat {xOy}\). Số đo\(\widehat {xOt}\) bằng:
-
A.
50 0 .
-
B.
120 0 .
-
C.
60 0 .
-
D.
70 0 .
-
A.
Cá.
-
B.
Chó.
-
C.
Mèo.
-
D.
Chim.
Kết quả tìm hiểu về kết quả xếp loại học lực của các bạn học sinh Khối 7 được cho bởi bảng thống kê sau:
Xác định dữ liệu định tính trong bảng thống kê trên:
-
A.
Dữ liệu định tính là: 120; 285
-
B.
Dữ liệu định tính là: 120; 285; 150; 25
-
C.
Dữ liệu định tính là: Giỏi, Khá, Đạt, Chưa Đạt
-
D.
Dữ liệu định tính là: Số học sinh.
Cho đường thẳng c cắt hai đường thẳng a và b. Nhận định nào sau đây có thể chỉ ra hai đường thẳng a và b song song?
-
A.
\(\widehat {{A_4}} = \widehat {{B_4}}\) (hai góc so le trong).
-
B.
\(\widehat {{A_4}} = \widehat {{B_2}}\) (hai góc đồng vị).
-
C.
\(\widehat {{A_2}} = \widehat {{B_2}}\) (hai góc trong cùng phía).
-
D.
\(\widehat {{A_2}} = \widehat {{B_2}}\) (hai góc đồng vị).
Lời giải và đáp án
Số đối của số \( - \frac{3}{5}\) là:
-
A.
\( - \frac{3}{5}\) .
-
B.
\(\frac{3}{5}\).
-
C.
\(\frac{5}{3}\).
-
D.
\( - \frac{5}{3}\).
Đáp án : B
Dựa vào kiến thức về số đối.
Số đối của số \( - \frac{3}{5}\) là \(\frac{3}{5}\).
Căn bậc hai số học của 121 là:
-
A.
10 .
-
B.
11.
-
C.
12.
-
D.
13.
Đáp án : B
Sử dụng kiến thức về căn bậc hai số học: Căn bậc hai số học của số a không âm là số x không âm sao cho \({x^2} = a\).
Căn bậc hai số học của 121 là \(\sqrt {121} = 11\).
Số nào là số vô tỉ trong các số sau:
-
A.
\(\frac{4}{5}\) .
-
B.
\( - \sqrt 7 \).
-
C.
\(0\).
-
D.
\(3,15\).
Đáp án : B
Số vô tỉ được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn.
Ta có: \(0 = \frac{0}{1};3,15 = \frac{{63}}{{20}}\). Các số \(\frac{4}{5};0;3,15\) là số hữu tỉ nên không phải là số vô tỉ.
Cho \(\left| x \right|\) = 16 thì giá trị của x là:
-
A.
x = 16 .
-
B.
x = – 16.
-
C.
x = 4 hoặc x = – 4.
-
D.
x = 16 hoặc x = – 16.
Đáp án : D
Dựa vào kiến thức về dấu giá trị tuyệt đối.
\(\left| x \right| = \left\{ \begin{array}{l}x\,khi\,x \ge 0\\ - x\,khi\,x < 0\end{array} \right.\)
\(\left| x \right|\) = 16 thì x = 16 hoặc x = – 16.
Cho hai đường thẳng xy và zt cắt nhau như hình vẽ, biết \(\widehat {xOz} = {140^0}\). Tính số đo \(\widehat {zOy}\):
-
A.
\({140^0}\).
-
B.
\({150^0}\).
-
C.
\({40^0}\).
-
D.
\({50^0}\).
Đáp án : C
Dựa vào kiến thức hai góc kề bù.
Vì \(\widehat {xOz}\) và \(\widehat {zOy}\) là hai góc kề bù nên \(\widehat {xOz} + \widehat {zOy} = {180^0}\) suy ra \(\widehat {zOy} = {180^0} - \widehat {xOz} = {180^0} - {140^0} = {40^0}\).
Cho hình lập phương có các kích thước như hình vẽ. Diện tích xung quanh của hình lập phương đó là:
-
A.
6400cm 2 .
-
B.
160cm 2 .
-
C.
9600cm 2 .
-
D.
64000cm 2 .
Đáp án : A
Dựa vào công thức tính diện tích xung quanh của hình lập phương: S xq = 4.cạnh 2 .
Diện tích xung quanh của hình lập phương này là:
\({S_{xq}} = {4.40^2} = 6400\left( {c{m^2}} \right)\)
Cho hình lăng trụ đứng tam giác \(ABC.A'B'C'\) có cạnh \(A'B' = 3\,{\rm{cm}}\),\({B^\prime }{C^\prime } = 5\,{\rm{cm}}\), \(A'C' = 6\,{\rm{cm}}\), \(AA' = 7\:{\rm{cm}}\).
Diện tích xung quanh của hình lăng trụ đứng là:
-
A.
\(98c{m^2}\).
-
B.
\(105c{m^2}\).
-
C.
\(210c{m^2}\).
-
D.
\(90c{m^2}\).
Đáp án : A
Dựa vào công thức tính diện tích xung quanh của hình lăng trụ đứng: S xq = C đáy . chiều cao.
Diện tích xung quanh hình lăng trụ đứng đó là:
\({S_{xq}} = \left( {3 + 5 + 6} \right).7 = 98\left( {c{m^2}} \right)\)
Nhà bạn An đang tiến hành làm một con dốc bằng bê tông để dẫn xe vào nhà có hình là một lăng trụ đứng tam giác có kích thước như hình dưới đây. Tính thể tích của con dốc.
-
A.
45.
-
B.
\(\frac{1}{3}\).
-
C.
5.
-
D.
15.
Đáp án : A
Dựa vào kiến thức về hai đại lượng tỉ lệ nghịch.
Vì x và y là hai đại lượng tỉ lệ nghịch với nhau nên hệ số tỉ lệ nghịch là: 3.15 = 45.
Cho \(\widehat {xOy} = {120^0}\). Gọi Ot là tia phân giác của \(\widehat {xOy}\). Số đo\(\widehat {xOt}\) bằng:
-
A.
50 0 .
-
B.
120 0 .
-
C.
60 0 .
-
D.
70 0 .
Đáp án : C
Dựa vào kiến thức về tia phân giác.
Vì Ot là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}\widehat {xOy} = \frac{1}{2}{.120^0} = {60^0}\).
-
A.
Cá.
-
B.
Chó.
-
C.
Mèo.
-
D.
Chim.
Đáp án : C
Quan sát biểu đồ để xác định.
Quan sát biểu đồ, loài vật nuôi được yêu thích chiếm tỉ lệ cao nhất là mèo (chiếm 50%).
Kết quả tìm hiểu về kết quả xếp loại học lực của các bạn học sinh Khối 7 được cho bởi bảng thống kê sau:
Xác định dữ liệu định tính trong bảng thống kê trên:
-
A.
Dữ liệu định tính là: 120; 285
-
B.
Dữ liệu định tính là: 120; 285; 150; 25
-
C.
Dữ liệu định tính là: Giỏi, Khá, Đạt, Chưa Đạt
-
D.
Dữ liệu định tính là: Số học sinh.
Đáp án : B
Dựa vào kiến thức về dữ liệu định tính.
Dữ liệu định tính là: 120; 285; 150; 25.
Cho đường thẳng c cắt hai đường thẳng a và b. Nhận định nào sau đây có thể chỉ ra hai đường thẳng a và b song song?
-
A.
\(\widehat {{A_4}} = \widehat {{B_4}}\) (hai góc so le trong).
-
B.
\(\widehat {{A_4}} = \widehat {{B_2}}\) (hai góc đồng vị).
-
C.
\(\widehat {{A_2}} = \widehat {{B_2}}\) (hai góc trong cùng phía).
-
D.
\(\widehat {{A_2}} = \widehat {{B_2}}\) (hai góc đồng vị).
Đáp án : D
Dựa vào dấu hiệu nhận biết hai đường thẳng song song.
Góc A 4 và góc B 4 không phải hai góc so le trong nên A sai.
Góc A 4 và góc B 2 không phải hai góc đồng vị nên B sai.
Góc A 2 và góc B 2 không phải là hai góc trong cùng phía nên C sai.
\(\widehat {{A_2}} = \widehat {{B_2}}\), góc A 2 và góc B 2 là hai góc đồng vị suy ra a // b nên D đúng.
Sử dụng các quy tắc thực hiện phép tính.
a) \(\frac{1}{3} - \frac{5}{4} + \frac{7}{6}\)
\( = \frac{4}{{12}} - \frac{{15}}{{12}} + \frac{{14}}{{12}} = \frac{3}{{12}} = \frac{1}{4}\)
b) \(\frac{{11}}{3} \cdot \frac{2}{5} + \frac{{11}}{3} \cdot \frac{8}{5} - \frac{{11}}{3}\)
\( = \frac{{11}}{3} \cdot \left( {\frac{2}{5} + \frac{8}{5} - 1} \right) = \frac{{11}}{3} \cdot \left( {2 - 1} \right) = \frac{{11}}{3}\)
- Sử dụng quy tắc chuyển vế.
- Chia hai trường hợp để bỏ dấu giá trị tuyệt đối.
Ta có: \(\frac{1}{3} - \left| {\frac{3}{4} - x} \right| = \frac{1}{{12}}\)
\(\begin{array}{l}\left| {\frac{3}{4} - x} \right| = \frac{1}{3} - \frac{1}{{12}}\\\left| {\frac{3}{4} - x} \right| = \frac{1}{4}\end{array}\)
\(\left| {\frac{3}{4} - x} \right| = \frac{1}{4}\) thì \(\frac{3}{4} - x = \frac{1}{4}\) hoặc \(\frac{3}{4} - x = - \frac{1}{4}\)
TH1. \(\frac{3}{4} - x = \frac{1}{4}\)
\(\begin{array}{l}x = \frac{3}{4} - \frac{1}{4}\\x = \frac{1}{4}\end{array}\)
TH2. \(\frac{3}{4} - x = - \frac{1}{4}\)
\(\begin{array}{l}x = \frac{3}{4} + \frac{1}{4}\\x = 1\end{array}\)
Vậy \(x \in \left\{ {\frac{1}{4};1} \right\}\).
Sử dụng phép chia sau đó làm tròn kết quả đến hàng phần trăm.
Độ dài mỗi đoạn gỗ là: \(6,323 \div 4 = 1,58075 \approx 1,58\)(m)
Vậy độ dài mỗi đoạn gỗ là khoảng 1,58m.
Dựa vào tính chất của hai đường thẳng song song.
Vì a // b nên:
\(\widehat {{A_1}} = \widehat {{B_1}} = {125^0}\) (hai góc đồng vị)
Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = {180^0}\) (hai góc kề bù) Suy ra: \(\widehat {{B_2}} = {180^0} - \widehat {{B_1}} = {180^0} - {125^0} = {55^0}\).
a) Tính diện tích xung quanh hình hộp chữ nhật + diện tích 1 đáy.
b) Tính thể tích hình hộp chữ nhật đó.
a) Diện tích kính làm hồ cá chính là diện tích xung quanh của hình hộp chữ nhật + diện tích một đáy của hình hộp chữ nhật.
Vậy diện tích kính làm hồ cá là: 2.(40 + 30).35 + 40.30 = 6 100 (cm 2 ).
b) Số lít nước tối đa hồ cá có thể chứa được chính là thể tích của hình hộp chữ nhật.
Vậy số lít nước tối đa hồ cá có thể chưa được là: 40.30.35 = 42 000 (cm 3 ) = 42 (lít).
Dựa vào cách làm tròn số với độ chính xác cho trước.
Do độ chính xác (d = 500) đến hàng trăm nên ta làm tròn số 8 214 353 đến hàng nghìn và ta có: \(8{\rm{ 214 353}} \approx {\rm{ 8 214 000}}\)
Tính số tiền Minh phải trả sau khi giảm 5%.
Tính số tiền Minh phải trả sau khi tính thẻ VIP.
Vì Minh mua 1 cái áo giá 325 000 đồng và 1 đôi giày giá 490 000 đồng nên Minh sẽ phải trả tiền cho sản phẩm cao giá nhất đó là đôi giày giá 490 000 đồng.
Số tiền Minh phải trả sau khi giảm giá 5% là:
\(490\,000.\left( {100\% - 5\% } \right) = 465\;500\)(đồng).
Số tiền Minh phải trả sau khi tính thẻ VIP là:
\(465\;500.\left( {100\% - 10\% } \right) = 418\;950\)(đồng).
Vậy số tiền Minh phải trả là 418 950 đồng.
Dựa vào cách đọc biểu đồ.