Định nhĩa nghiệm của hệ bất phương trình bậc nhất hai ẩn - Định nghĩa miền nghiệm - Biểu diễn miền nghiệm của hệ bất phương trình — Không quảng cáo

Lý thuyết Toán lớp 10 Lý thuyết Hệ bất phương trình bậc nhất hai ẩn Toán 10


Nghiệm của hệ bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm

Cặp số \(({x_0};{y_0})\) được gọi là một nghiệm của hệ bất phương trình bậc nhất hai ẩn nếu nó là nghiệm chung của tất cả các bất phương trình trong hệ. Trong mặt phẳng tọa độ \(Oxy\), miền nghiệm của hệ bất phương trình bậc nhất hai ẩn là tập hợp các điểm \(({x_0};{y_0})\) là nghiệm của hệ bất phương trình đó.

1. Lý thuyết

+ Định nghĩa:

Cặp số \(({x_0};{y_0})\) được gọi là một nghiệm của hệ bất phương trình bậc nhất hai ẩn nếu nó là nghiệm chung của tất cả các bất phương trình trong hệ.

Trong mặt phẳng tọa độ \(Oxy\), miền nghiệm của hệ bất phương trình bậc nhất hai ẩn là tập hợp các điểm \(({x_0};{y_0})\) là nghiệm của hệ bất phương trình đó.

+ Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn

Bước 1: Biểu diễn miền nghiệm của mỗi bất phương trình trong hệ trên cùng mặt phẳng tọa độ. Gạch bỏ miền không là nghiệm.

Bước 2: Phần không bị gạch là miền nghiệm của hệ.

+ Biểu diễn miền nghiệm của bất phương trình \(ax + by \le c\)

Bước 1: Vẽ đường thẳng \(\Delta :ax + by = c\)

Bước 2: Lấy điểm \(A({x_0};{y_0})\) không thuộc \(\Delta \). Tính \(a{x_0} + b{y_0}\) rồi so sánh với c.

Bước 3: Kết luận

Nếu \(a{x_0} + b{y_0} < c\) thì miền nghiệm là nửa mặt phẳng (kể cả bờ \(\Delta \)) chứa điểm \(A({x_0};{y_0})\).

Nếu \(a{x_0} + b{y_0} > c\) thì miền nghiệm là nửa mặt phẳng (kể cả bờ \(\Delta \)) không chứa điểm \(A({x_0};{y_0})\).

2. Ví dụ minh họa

+ Nghiệm của hệ bất phương trình bậc nhất hai ẩn :

Cặp số \((7;0)\) là một nghiệm của hệ BPT \(\left\{ {\begin{array}{*{20}{l}}{2x + 3y > 10}\\{x - y \le 7}\end{array}} \right.\)

Cặp số \((0;0)\) không là nghiệm của hệ BPT \(\left\{ {\begin{array}{*{20}{l}}{2x + 3y > 10}\\{x - y \le 7}\end{array}} \right.\)

Điểm \((2;1)\) thuộc miền nghiệm của hệ BPT \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}x \ge 0\\2x - 3y < 10\end{array}\\{x + 2y \le 7}\end{array}} \right.\)

Điểm \(( - 1;0)\) không thuộc miền nghiệm của hệ BPT \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}x \ge 0\\2x - 3y < 10\end{array}\\{x + 2y \le 7}\end{array}} \right.\)

+ Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x - y > 2\\3x + y \le 6\end{array} \right.\)

Bước 1:

  • Xác định miền nghiệm của BPT \(2x - y > 2\)

Vẽ đường thẳng \(\Delta :2x - y = 2\) (nét đứt) đi qua (1;0) và (0; -2).

Lấy điểm \(O(0;0)\) không thuộc \(\Delta \). Ta có \(2.0 - 0 = 0\) và \(c = 2\).

Vì  \(2.0 - 0 = 0 < 2\) nên điểm \(O(0;0)\) không thuộc miền nghiệm.

Vậy miền nghiệm của BPT \(2x - y > 2\) là nửa mặt phẳng (không kể bờ \(\Delta \)) không chứa điểm \(O(0;0)\) (miền không gạch chéo).

  • Xác định miền nghiệm của BPT \(3x + y \le 6\)

Vẽ đường thẳng \(d:3x + y = 6\) (nét liền) đi qua (2;0) và (0; 6).

Lấy điểm \(O(0;0)\) không thuộc \(d\). Ta có \(3.0 + 0 = 0\) và \(c = 6\).

Vì  \(3.0 + 0 = 0 \le 6\) nên điểm \(O(0;0)\) thuộc miền nghiệm.

Vậy miền nghiệm của BPT \(3x + y \le 6\) là nửa mặt phẳng (kể cả bờ \(d\)) chứa điểm \(O(0;0)\) (miền không gạch chéo).

Bước 2: Kết luận

Miền không bị gạch (kể cả d, không kể \(\Delta \)) là miền nghiệm của hệ bất phương trình đã cho.


Cùng chủ đề:

Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F=ax+by trên một miền đa giác - Ứng dung của hệ bất phương trình bậc nhất hai ẩn
Điểm thuộc, không thuộc đồ thị hàm số - Vẽ đồ thị hàm số
Định nghĩa mệnh đề chứa biến - Phân biệt mệnh đề và mệnh đề chứa biến
Định nghĩa mệnh đề kéo theo - Tính đúng sai của mệnh đề kéo theo - Các cách phát biểu mệnh đề kéo theo
Định nghĩa mệnh đề đảo - Phát biểu mệnh đề đảo - Hai mệnh đề tương đương - Phát biểu hai mệnh đề tương đương
Định nhĩa nghiệm của hệ bất phương trình bậc nhất hai ẩn - Định nghĩa miền nghiệm - Biểu diễn miền nghiệm của hệ bất phương trình