Giải bài 1. 55 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Kết nối tri thức với cuộc sống Bài tập cuối chương I - SBT Toán 11 KNTT


Giải bài 1.55 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Rút gọn các biểu thức sau

Đề bài

Rút gọn các biểu thức sau

a) \(\frac{{\sin ({{45}^0} + \alpha ) - \cos ({{45}^0} + \alpha )}}{{\sin ({{45}^0} + \alpha ) + \cos ({{45}^0} + \alpha )}}\);

b) \(\frac{{\sin 2\alpha  + \sin \alpha }}{{1 + \cos 2\alpha  + \cos \alpha }}\);

c) \(\frac{{1 + \cos \alpha  - \sin \alpha }}{{1 - \cos \alpha  - \sin \alpha }}\);

d) \(\frac{{\sin \alpha  + \sin 3\alpha  + \sin 5\alpha }}{{\cos \alpha  + \cos 2\alpha  + \cos 5\alpha }}\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức cộng, công thức cơ bản, công thức góc nhân đôi, công thức biên đổi tổng thành tích để biến đổi linh hoạt, rút gọn

\(\begin{array}{l}\cos (\alpha  + \beta ) = \cos \alpha \cos \beta  - \sin \alpha .\sin \beta \\\sin (\alpha  + \beta ) = \sin \alpha \cos \beta  + \cos \alpha .\sin \beta \end{array}\)

\(\frac{{\sin a}}{{\cos a}} = \tan a\); \(\frac{{\cos a}}{{\sin a}} = \cot a\)

\(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1\);

\(\sin 2\alpha  = 2\sin \alpha \cos \alpha \);

\(\begin{array}{l}\cos a + \cos b = 2\cos \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\\\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\end{array}\)

Lời giải chi tiết

a) Ta có

\(\begin{array}{l}\frac{{\sin ({{45}^0} + \alpha ) - \cos ({{45}^0} + \alpha )}}{{\sin ({{45}^0} + \alpha ) + \cos ({{45}^0} + \alpha )}}\\ = \frac{{\sin {{45}^0}\cos \alpha  + \cos {{45}^0}\sin \alpha  - (\cos {{45}^0}\cos \alpha  - \sin {{45}^0}\sin \alpha )}}{{\sin {{45}^0}\cos \alpha  + \cos {{45}^0}\sin \alpha  + (\cos {{45}^0}\cos \alpha  - \sin {{45}^0}\sin \alpha )}}\\ = \frac{{\frac{{\sqrt 2 }}{2}\cos \alpha  + \frac{{\sqrt 2 }}{2}\sin \alpha  - \left( {\frac{{\sqrt 2 }}{2}\cos \alpha  - \frac{{\sqrt 2 }}{2}\sin \alpha } \right)}}{{\frac{{\sqrt 2 }}{2}\cos \alpha  + \frac{{\sqrt 2 }}{2}\sin \alpha  + \left( {\frac{{\sqrt 2 }}{2}\cos \alpha  - \frac{{\sqrt 2 }}{2}\sin \alpha } \right)}}\\ = \frac{{\sqrt 2 \sin \alpha }}{{\sqrt 2 \cos \alpha }} = \tan \alpha .\end{array}\)

b) Ta có

\(\begin{array}{l}\frac{{\sin 2\alpha  + \sin \alpha }}{{1 + \cos 2\alpha  + \cos \alpha }} = \frac{{2\sin \alpha .\cos \alpha  + \sin \alpha }}{{1 + 2{{\cos }^2}\alpha  - 1 + \cos \alpha }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha (2\cos \alpha  + 1)}}{{2{{\cos }^2}\alpha  + \cos \alpha }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha .(2\cos \alpha  + 1)}}{{\cos \alpha .(2\cos \alpha  + 1)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\sin \alpha }}{{\cos \alpha }} = \tan \alpha .\end{array}\)

c) Ta có

\(\begin{array}{l}\frac{{1 + \cos \alpha  - \sin \alpha }}{{1 - \cos \alpha  - \sin \alpha }}\\ = \frac{{1 + 2{{\cos }^2}\frac{\alpha }{2} - 1 - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}{{1 - \left( {1 - 2{{\sin }^2}\frac{\alpha }{2}} \right) - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}\\ = \frac{{2{{\cos }^2}\frac{\alpha }{2} - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}{{2{{\sin }^2}\frac{\alpha }{2} - 2\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}}\\ = \frac{{2\cos \frac{\alpha }{2}.\left( {\cos \frac{\alpha }{2} - \sin \frac{\alpha }{2}} \right)}}{{2\sin \frac{\alpha }{2}.\left( {\sin \frac{\alpha }{2} - \cos \frac{\alpha }{2}} \right)}}\\ =  - \frac{{\cos \frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}}} =  - \cot \frac{\alpha }{2}.\end{array}\)

d) Ta có:

\(\begin{array}{l}\frac{{\sin \alpha  + \sin 3\alpha  + \sin 5\alpha }}{{\cos \alpha  + \cos 3\alpha  + \cos 5\alpha }}\\ = \frac{{\left( {\sin \alpha  + \sin 5\alpha } \right) + \sin 3\alpha }}{{\left( {\cos \alpha  + \cos 5\alpha } \right) + \cos 3\alpha }}\\ = \frac{{2\sin \frac{{\alpha  + 5\alpha }}{2}\cos \frac{{\alpha  - 5\alpha }}{2} + \sin 3\alpha }}{{2\cos \frac{{\alpha  + 5\alpha }}{2}\cos \frac{{\alpha  - 5\alpha  + \cos 3\alpha }}{2}}}\\ = \frac{{2\sin 3\alpha .\cos ( - 2\alpha ) + \sin 3\alpha }}{{2\cos 3\alpha \cos ( - 2\alpha ) + \cos 3\alpha }}\\ = \frac{{\sin 3\alpha (2\cos ( - 2\alpha ) + 1)}}{{\cos 3\alpha (2\cos ( - 2\alpha ) + 1)}} = \frac{{\sin 3\alpha }}{{\cos 3\alpha }} = \tan 3\alpha .\end{array}\)


Cùng chủ đề:

Giải bài 1. 50 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 51 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 52 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 53 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 54 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 55 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 56 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 57 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 58 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 59 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Giải bài 1. 60 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống