Giải bài 1 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài tập ôn tập cuối năm - SBT Toán 9 KNTT


Giải bài 1 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải các phương trình sau: a) (left( {x + 2} right)left( {{x^2} - x + 3} right) = {x^3} + 8); b) (frac{{11}}{x} = frac{9}{{x + 1}} + frac{2}{{x - 4}}); c) ({left( {{x^2} - 3x} right)^2} - {left( {x - 4} right)^2} = 0).

Đề bài

Giải các phương trình sau:

a) \(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) = {x^3} + 8\);

b) \(\frac{{11}}{x} = \frac{9}{{x + 1}} + \frac{2}{{x - 4}}\);

c) \({\left( {{x^2} - 3x} \right)^2} - {\left( {x - 4} \right)^2} = 0\).

Phương pháp giải - Xem chi tiết

a, c) Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì A=0 hoặc B=0. Giải các phương trình đó và kết luận.

b) Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Lời giải chi tiết

a) \(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) = {x^3} + 8\)

\(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) - \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 0\)

\(\left( {x + 2} \right)\left( {{x^2} - x + 3 - {x^2} + 2x - 4} \right) = 0\)

\(\left( {x + 2} \right)\left( {x - 1} \right) = 0\)

\(x + 2 = 0\) hoặc \(x - 1 = 0\)

\(x =  - 2\) hoặc \(x = 1\)

Vậy phương trình đã cho có hai nghiệm \(x =  - 2\); \(x = 1\)

b) ĐKXĐ: \(x \ne 0;x \ne  - 1;x \ne 4\).

Ta có: \(\frac{{11}}{x} = \frac{9}{{x + 1}} + \frac{2}{{x - 4}}\)

\(\frac{{11\left( {x + 1} \right)\left( {x - 4} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}} = \frac{{9x\left( {x - 4} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}} + \frac{{2x\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}}\)

\(11{x^2} - 33x - 44 = 9{x^2} - 36x + 2{x^2} + 2x\)

\(11{x^2} - 9{x^2} - 2{x^2} - 33x + 36x - 2x = 44\)

\(x = 44\) (thỏa mãn ĐKXĐ)

Vậy phương trình đã cho có nghiệm \(x = 44\).

c) \({\left( {{x^2} - 3x} \right)^2} - {\left( {x - 4} \right)^2} = 0\)

\(\left( {{x^2} - 3x - x + 4} \right)\left( {{x^2} - 3x + x - 4} \right) = 0\)

\(\left( {{x^2} - 4x + 4} \right)\left( {{x^2} - 2x - 4} \right) = 0\)

Trường hợp 1: \({x^2} - 4x + 4 = 0\)

\({\left( {x - 2} \right)^2} = 0\)

\(x = 2\)

Trường hợp 2: \({x^2} - 2x - 4 = 0\)

Ta có: \(\Delta ' = {\left( { - 1} \right)^2} + 4 = 5\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1 + \sqrt 5 \); \({x_2} = 1 - \sqrt 5 \).

Vậy phương trình đã cho có ba nghiệm \(x = 2\); \(x = 1 + \sqrt 5 \); \(x = 1 - \sqrt 5 \).


Cùng chủ đề:

Giải SBT Toán 9 bài tập cuối chương v trang 69, 70, 72 - Kết nối tri thức
Giải SBT Toán 9 bài tập cuối chương vi trang 18, 19, 20 - Kết nối tri thức
Giải SBT Toán 9 bài tập cuối chương vii trang 38, 39, 40 - Kết nối tri thức
Giải SBT Toán 9 bài tập cuối chương viii trang 47, 48 - Kết nối tri thức
Giải SBT Toán 9 bài tập cuối chương x trang 69, 70, 71 - Kết nối tri thức
Giải bài 1 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
Giải bài 1. 1 trang 7 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 1. 2 trang 8 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 1. 3 trang 8 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 1. 4 trang 8 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 1. 5 trang 8 sách bài tập toán 9 - Kết nối tri thức tập 1