Giải Bài 12 trang 107 sách bài tập toán 7 tập 1 - Cánh diều
Ở Hình 20 có hai góc AOB và BOC là hai góc kề bù,
Đề bài
Ở Hình 20 có hai góc AOB và BOC là hai góc kề bù, \(\widehat {AOB} = 3\widehat {BOC}\), \(\widehat {AOD} = \widehat {BOC}\).
a) Tính số đo góc BOC .
b) Tia OB có là tia phân giác của góc COD hay không?
Phương pháp giải - Xem chi tiết
a) Tính số đo góc cần tìm dựa vào dữ kiện đề bài và tổng hai góc kề bù có số đo bằng 180°.
b) Muốn biết tia OB có là tia phân giác của góc COD hay không, ta tính số đo của hai góc tại bởi tia OB và tia OC, OD .
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}\widehat {AOB} + \widehat {BOC} = \widehat {AOC} = 180^\circ \to 3\widehat {BOC} + \widehat {BOC} = 180^\circ \\ \to 4\widehat {BOC} = 180^\circ \Rightarrow \widehat {BOC} = \widehat {AOD} = 180^\circ :4 = 45^\circ \end{array}\)
Vậy \(\widehat {BOC} = 45^\circ \).
b) Ta có: \(\widehat {BOD} = \widehat {AOC} - \widehat {AOD} - \widehat {BOC} = 180^\circ - 45^\circ - 45^\circ = 90^\circ \).
Mà \(\widehat {BOC} = 45^\circ < \widehat {BOD} = 90^\circ \) nên tia OB không là tia phân giác của góc COD.