Giải bài 17 trang 40 sách bài tập toán 8 - Cánh diều — Không quảng cáo

SBT Toán 8 - Giải SBT Toán 8 - Cánh diều Bài 3. Phép nhân, phép chia phân thức đại số - SBT Toán


Giải bài 17 trang 40 sách bài tập toán 8 - Cánh diều

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

Đề bài

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)

b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)

c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)

Phương pháp giải - Xem chi tiết

Rút gọn các biểu thức để cho giá trị của biểu thức là một hằng số thì giá trị của biểu thức sẽ không phụ thuộc vào giá trị của biến.

Lời giải chi tiết

a) Rút gọn biểu thức \(M\) ta có:

\(\begin{array}{l}M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\\ = \frac{{x - 2y}}{{3x + 6y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{{x^2} - 4{y^2}}}\\ = \frac{{\left( {x - 2y} \right).{{\left( {x + 2y} \right)}^2}}}{{3\left( {x + 2y} \right).\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{1}{3}\end{array}\)

Ta thấy \(M = \frac{1}{3}\) vậy giá trị của biểu thức \(M\) không phụ thuộc vào giá trị của biến.

b) Rút gọn biểu thức \(N\) ta có:

\(\begin{array}{l}N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\\ = \left( {\frac{{x\left( {x + y} \right)}}{{x + y}} - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y}}{{y\left( {x - y} \right)}} + \frac{{2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{{x^2} + xy - {x^2} - {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y + 2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{xy - {y^2}}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{y\left( {x - y} \right)}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = 1\end{array}\)

Ta thấy \(N = 1\) vậy giá trị của biểu thức \(N\) không phụ thuộc vào giá trị của biến.

c) Rút gọn biểu thức \(P\) ta có:

\(\begin{array}{l}P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\\ = \left( {\frac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x + y}} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \left( {{x^2} - xy + {y^2} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \frac{{{x^2} + {y^2} - 2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{x - y}}{{x + y}} + \frac{{2y}}{{x + y}}\\ = \frac{{x + y}}{{x + y}} = 1\end{array}\)

Ta thấy \(P = 1\) vậy giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến.


Cùng chủ đề:

Giải bài 16 trang 65 sách bài tập toán 8 – Cánh diều
Giải bài 16 trang 78 sách bài tập toán 8 - Cánh diều
Giải bài 16 trang 94 sách bài tập toán 8 - Cánh diều
Giải bài 17 trang 14 sách bài tập toán 8 - Cánh diều
Giải bài 17 trang 25 sách bài tập toán 8 – Cánh diều
Giải bài 17 trang 40 sách bài tập toán 8 - Cánh diều
Giải bài 17 trang 48 sách bài tập toán 8 – Cánh diều
Giải bài 17 trang 57 sách bài tập toán 8 - Cánh diều
Giải bài 17 trang 65 sách bài tập toán 8 – Cánh diều
Giải bài 17 trang 78 sách bài tập toán 8 - Cánh diều
Giải bài 17 trang 94 sách bài tập toán 8 - Cánh diều