Giải bài 17 trang 94 sách bài tập toán 8 - Cánh diều
Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H,K sao cho E là trung điểm của CH,D là trung điểm của BK. Chứng minh:
Đề bài
Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H,K sao cho E là trung điểm của CH,D là trung điểm của BK. Chứng minh:
a) Các tứ giác AHBC,AKCB là hình bình hành;
b) A là trung điểm của HK.
Phương pháp giải - Xem chi tiết
Dựa vào dấu hiệu nhận biết của hình bình hành:
- Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành
- Tứ giác có hai cặp góc đối bằng nhau là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
Lời giải chi tiết
a) Tứ giác AHBC có E là trung điểm của hai đường chéo AB và CH nên AHBC là hình bình hành.
Tương tự, ta chứng minh được tứ giác AKCB là hình bình hành.
b) Do AHBC là hình bình hành nên AH//BC, AH=BC. Tương tự, AKCB là hình bình hành nên AK//BC,AK=BC. Suy ra ba điểm H,A,K thẳng hàng và AH=AK. Vậy A là trung điểm của HK.