Giải bài 19 trang 43 sách bài tập toán 7 - Cánh diều
Cho đa thức \(R(x) = {x^2} + 5{x^4} - 3{x^3} + {x^2} + 4{x^4} + 3{x^3} - x + 5\)
Đề bài
Cho đa thức \(R(x) = {x^2} + 5{x^4} - 3{x^3} + {x^2} + 4{x^4} + 3{x^3} - x + 5\)
a) Thu gọn và sắp xếp đa thức R ( x ) theo số mũ giảm dần của biến
b) Tìm bậc của đa thức R ( x )
c) Tìm hệ số cao nhất và hệ số tự do của đa thức R ( x )
d) Tính R (−1), R (0), R (1), R (− a ) (với a là một số)
Phương pháp giải - Xem chi tiết
Bước 1: Cộng, trừ các đơn thức có cùng số mũ của biến để rút gọn và sắp xếp đa thức rút gọn theo số mũ giảm dần của biến
Bước 2: Tìm bậc của đa thức là số mũ cao nhất của biến
Bước 3: Tìm hệ số cao nhất là hệ số của lũy thừa cao nhất của x và hệ số tự do là số không chứa biến x
Bước 4: Thay x = -1, x = 0, x = 1, x = - a vào đa thức rút gọn để tính giá trị R (−1), R (0), R (1), R (− a )
Lời giải chi tiết
a) Ta có: \(R(x) = {x^2} + 5{x^4} - 3{x^3} + {x^2} + 4{x^4} + 3{x^3} - x + 5 = (5{x^4} + 4{x^4}) + ({x^2} + {x^2}) - x + 5 = 9{x^4} + 2{x^2} - x + 5\)
b) Bậc của đa thức R ( x ) là 4
c) Hệ số cao nhất của R ( x ) là 9, hệ số tự do của R ( x ) là 5
d) Ta có:
\(R( - 1) = 9.{( - 1)^4} + 2.{( - 1)^2} - ( - 1) + 5 = 17\); \(R(0) = 9.{(0)^4} + 2.{(0)^2} - 0 + 5 = 5\);
\(R(1) = {9.1^4} + {2.1^2} - 1 + 5 = 15\); \(R( - a) = 9.{( - a)^4} + 2.{( - a)^2} - ( - a) + 5 = 9{a^4} + 2{a^2} + a + 5\)