Giải bài 2 trang 6 vở thực hành Toán 9 tập 2
Cho hình lăng trụ đứng có đáy là hình vuông cạnh a (cm) và chiều cao 10cm. a) Viết công thức tính thể tích V của lăng trụ theo a và tính giá trị của V khi (a = 2cm). b) Nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình lăng trụ thay đổi thế nào?
Đề bài
Cho hình lăng trụ đứng có đáy là hình vuông cạnh a (cm) và chiều cao 10cm.
a) Viết công thức tính thể tích V của lăng trụ theo a và tính giá trị của V khi \(a = 2cm\).
b) Nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình lăng trụ thay đổi thế nào?
Phương pháp giải - Xem chi tiết
a) Công thức tính thể tích lăng trụ đứng: \(V = B.h\), trong đó V là thể tích của hình lăng trụ, B là diện tích đáy và h là chiều cao của lăng trụ.
b) Tính thể tích V’ của lăng trụ mới theo a, từ đó rút ra kết luận.
Lời giải chi tiết
a) Thể tích của hình lăng trụ là: \(V = 10.{a^2}\) \(\left( {c{m^3}} \right)\).
Với \(a = 2cm\), ta có: \(V = {10.2^2} = 40\left( {c{m^3}} \right)\).
b) Nếu tăng độ dài cạnh đáy lên hai lần thì thể tích của hình lăng trụ mới là: \(V' = 10.{\left( {2a} \right)^2} = 40{a^2} = 4V\)
Vậy khi độ dài cạnh đáy tăng lên hai lần thì thể tích của hình lăng trụ tăng lên 4 lần.