Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo — Không quảng cáo

Bài 4. Ba đường conic trong mặt phẳng tọa độ - SBT Toán


Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng

Đề bài

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1\)

b) \(\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225\)

c) \(\left( {{C_3}} \right):x = 2{y^2}\)

Phương pháp giải - Xem chi tiết

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x =  - \frac{p}{2}\)

Lời giải chi tiết

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1 \Rightarrow \frac{{{x^2}}}{{\frac{1}{7}}} + \frac{{{y^2}}}{{\frac{1}{{13}}}} = 1 \Rightarrow {a^2} = \frac{1}{7};{b^2} = \frac{1}{{13}}\)

\( \Rightarrow {c^2} = {a^2} - {b^2} = \frac{1}{7} - \frac{1}{{13}} = \frac{6}{{91}} \Rightarrow c = \sqrt {\frac{6}{{91}}} \)

\(\left( {{C_1}} \right)\) là elip có hai tiêu điểm \({F_1}\left( { - \sqrt {\frac{6}{{91}}} ;0} \right),{F_2}\left( {\sqrt {\frac{6}{{91}}} ;0} \right)\)

b) \(\begin{array}{l}\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225 \Rightarrow \frac{{25{x^2}}}{{225}} - \frac{{9{y^2}}}{{225}} = 1 \Rightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\\ \Rightarrow {a^2} = 9;{b^2} = 25;{c^2} = {a^2} + {b^2} = 9 + 25 = 34 \Rightarrow c = \sqrt {34} \end{array}\)

\(\left( {{C_2}} \right)\) là hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {34} ;0} \right),{F_2}\left( {\sqrt {34} ;0} \right)\)

c) \(\left( {{C_3}} \right):x = 2{y^2} \Rightarrow {y^2} = \frac{1}{2}x \Rightarrow p = \frac{1}{4}\)

\(\left( {{C_3}} \right)\) là parabol có tiêu điểm \(F\left( {\frac{1}{8};0} \right)\)


Cùng chủ đề:

Giải bài 2 trang 58 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 65 SBT toán 10 - Chân trời sáng tạo
Giải bài 2 trang 69 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 70 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 74 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 75 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 77 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 78 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 79 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 80 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 2 trang 81 sách bài tập toán 10 - Chân trời sáng tạo