Giải bài 2 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 4. Hình bình hành - Hình thoi Toán 8 chân trời sáng


Giải bài 2 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo

Cho hình bình hành

Đề bài

Cho hình bình hành \(ABCD\) , kẻ \(AH\) vuông góc với \(BD\) tại \(H\) \(CK\) vuông góc với \(BD\) tại \(K\) (Hình 20)

a) Chứng minh tứ giác \(AHCK\) là hình bình hành

b) Gọi \(I\) là trung điểm của \(HK\) .Chứng minh \(IB = ID\)

Phương pháp giải - Xem chi tiết

Sử dụng dấu hiệu nhận biết của hình bình hành

Lời giải chi tiết

a) Vì \(AH\) , \(CK\) vuông góc với \(BD\) (gt)

Suy ra \(AH\) // \(CK\)

\(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\) ; \(AD\) // \(BC\)

Xét \(\Delta ADH\) \(\Delta CBK\) ta có:

\(\widehat {{\rm{AHD}}} = \widehat {{\rm{CKB}}} = 90^\circ \) (gt)

\(AD = BC\) (cmt)

\(\widehat {{\rm{ADH}}} = \widehat {{\rm{CBK}}}\) (do \(AD\) // \(BC\) )

Suy ra \(\Delta ADH = \Delta CBK\) (ch-gn)

Suy ra \(AH = CK\) (hai cạnh tương ứng)

\(AH\) // \(CK\) (cmt)

Suy ra \(AHCK\) là hình bình hành

b) Vì \(AHCK\) là hình bình hành nên hai đường chéo \(HK\) và \(AC\) cắt nhau tại trung điểm.

Mà \(I\) là trung điểm của \(HK\).

Suy ra \(I\) là trung điểm của \(AC\).

Ta lại có \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm.

Suy ra \(I\) là trung điểm của \(BD\) hay \( IB = ID\)


Cùng chủ đề:

Giải bài 2 trang 65 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 2 trang 66 SGK Toán 8 – Chân trời sáng tạo
Giải bài 2 trang 70 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 2 trang 71 SGK Toán 8 – Chân trời sáng tạo
Giải bài 2 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 2 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 2 trang 82 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 2 trang 84 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 2 trang 87 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 2 trang 88 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 2 trang 90 SGK Toán 8 tập 2– Chân trời sáng tạo