Giải bài 23 trang 74 sách bài tập toán 11 - Cánh diều — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Cánh diều Bài 2. Các quy tắc tính đạo hàm - SBT Toán 11 CD


Giải bài 23 trang 74 sách bài tập toán 11 - Cánh diều

: Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\).

Đề bài

Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) trong mỗi trường hợp sau:

a) \(d\) song song với đường thẳng \(y = 5x - 2;\)

b) \(d\) vuông góc với đường thẳng \(y =  - 20x + 1;\)

Phương pháp giải - Xem chi tiết

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x 0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)

Lời giải chi tiết

Ta có: \(y' = \frac{{x + 2 - \left( {x - 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{5}{{{{\left( {x + 2} \right)}^2}}}.\)

a) Vì tiếp tuyến đó song song với đường thẳng \(y = 5x - 2\) nên tiếp tuyến có hệ số góc \(k = 5.\)

Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.

\( \Rightarrow y'\left( {{x_0}} \right) = 5 \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = 5 \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} =  - 1\\{x_0} =  - 3\end{array} \right.\)

Với \({x_0} =  - 1 \Rightarrow \) tiếp điểm \({M_1}\left( { - 1; - 4} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( { - 1; - 4} \right)\) là:

\(y = f'\left( { - 1} \right)\left( {x + 1} \right) + f\left( { - 1} \right) \Leftrightarrow y = 5\left( {x + 1} \right) - 4 \Leftrightarrow y = 5x + 1.\)

Với \({x_0} =  - 3 \Rightarrow \) tiếp điểm \({M_2}\left( { - 3;6} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 3;6} \right)\) là:

\(y = f'\left( { - 3} \right)\left( {x + 3} \right) + f\left( { - 3} \right) \Leftrightarrow y = 5\left( {x + 3} \right) + 6 \Leftrightarrow y = 5x + 21.\)

b) Vì tiếp tuyến đó vuông góc với đường thẳng \(y =  - 20x + 1\) nên tiếp tuyến có hệ số góc \(k = \frac{1}{{20}}.\)

Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.

\( \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{20}} \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = \frac{1}{{20}} \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 100 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 8\\{x_0} =  - 12\end{array} \right.\)

Với \({x_0} = 8 \Rightarrow \) tiếp điểm \({M_1}\left( {8;\frac{1}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( {8;\frac{1}{2}} \right)\) là:\(y = f'\left( 8 \right)\left( {x - 8} \right) + f\left( 8 \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x - 8} \right) + \frac{1}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{1}{{10}}.\)

Với \({x_0} =  - 12 \Rightarrow \) tiếp điểm \({M_2}\left( { - 12;\frac{3}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 12;\frac{3}{2}} \right)\) là:

\(y = f'\left( { - 12} \right)\left( {x + 12} \right) + f\left( { - 12} \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x + 12} \right) + \frac{3}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{{21}}{{10}}.\)


Cùng chủ đề:

Giải bài 22 trang 104 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 15 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 20 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 38 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 50 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 74 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 76 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 95 sách bài tập toán 11 - Cánh diều
Giải bài 23 trang 104 sách bài tập toán 11 - Cánh diều
Giải bài 24 trang 15 sách bài tập toán 11 - Cánh diều
Giải bài 24 trang 20 sách bài tập toán 11 - Cánh diều