Giải bài 3 trang 87 vở thực hành Toán 8 tập 2 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Bài 34. Ba trường hợp đồng dạng của hai tam giác trang


Giải bài 3 trang 87 vở thực hành Toán 8 tập 2

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’ ∽ ΔABC

Đề bài

Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’ ΔABC

Chứng minh rằng \(\frac{{A}'{M}'}{AM}=\frac{{B}'{N}'}{BN}=\frac{{C}'{P}'}{CP}\).

Phương pháp giải - Xem chi tiết

Chứng minh các tam giác đồng dạng và suy ra các tỉ số đồng dạng để chứng minh.

Lời giải chi tiết

Vì ΔA’B’C’ ∽ ΔABC nên: $\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$ (1), $\widehat{A'B'C'}=\widehat{ABC},\widehat{B'C'A'}=\widehat{BCA},\widehat{C'A'B'}=\widehat{CAB}$ (2).

Hai tam giác A’B’M’ và ABM có:

$\frac{B'M'}{BM}=\frac{\frac{B'C'}{2}}{\frac{BC}{2}}=\frac{B'C'}{BC}=\frac{B'A'}{BA}$ (theo (1)),

$\widehat{A'B'M'}=\widehat{A'B'C'}=\widehat{ABC}=\widehat{ABM}$

Suy ra $\Delta A'B'M'\backsim \Delta ABM$(c.g.c). Do đó $\frac{A'M'}{AM}=\frac{A'B'}{AB}$.

Tương tự, \(\Delta B'C'N'\backsim \Delta BCN\) và suy ra $\frac{B'N'}{BN}=\frac{B'C'}{BC},\Delta C'A'P'\backsim \Delta CAP$ và suy ra $\frac{C'P'}{CP}=\frac{A'C'}{AC}$. Từ các đẳng thức trên và (1) ta suy ra $\frac{A'M'}{AM}=\frac{B'N'}{BN}=\frac{C'P'}{CP}$.


Cùng chủ đề:

Giải bài 3 trang 77 vở thực hành Toán 8
Giải bài 3 trang 78 vở thực hành Toán 8
Giải bài 3 trang 84 vở thực hành Toán 8
Giải bài 3 trang 84 vở thực hành Toán 8 tập 2
Giải bài 3 trang 87 vở thực hành Toán 8
Giải bài 3 trang 87 vở thực hành Toán 8 tập 2
Giải bài 3 trang 90 vở thực hành Toán 8 tập 2
Giải bài 3 trang 93 vở thực hành Toán 8
Giải bài 3 trang 94 vở thực hành Toán 8 tập 2
Giải bài 3 trang 97 vở thực hành Toán 8
Giải bài 3 trang 97 vở thực hành Toán 8 tập 2