Giải bài 4. 31 trang 71 SGK Toán 10 – Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài tập cuối chương IV Toán 10 Kết nối tri thức


Giải bài 4.31 trang 71 SGK Toán 10 – Kết nối tri thức

Khẳng định nào sau đây là đúng?

Đề bài

Khẳng định nào sau đây là đúng?

A. \(( {\overrightarrow a .\overrightarrow b } )\overrightarrow c  = \overrightarrow a \,\,( {\overrightarrow b .\overrightarrow c })\)

B. \({( {\overrightarrow a .\overrightarrow b })^2} = {\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}\)

C. \(\overrightarrow a .\overrightarrow b  = | {\overrightarrow a } |.\left| {\overrightarrow b } \right|\,\sin ( {\overrightarrow a ,\overrightarrow b } )\)

D. \(\overrightarrow a \,\,( {\overrightarrow b  - \overrightarrow c }) = \overrightarrow a .\overrightarrow b  - \overrightarrow a .\,\overrightarrow c \)

Phương pháp giải - Xem chi tiết

+) \(\overrightarrow a .\overrightarrow b  = | {\overrightarrow a }|.| {\overrightarrow b }|\,\cos ( {\overrightarrow a ,\overrightarrow b })\)

Lời giải chi tiết

Chọn D . Đây là một tính chất của tích vô hướng.

A. Sai vì \(({\overrightarrow a .\overrightarrow b})\overrightarrow c  = [ {|\overrightarrow a |.|\overrightarrow b |\;\,\cos ( {\overrightarrow a ,\overrightarrow b } )} ].\overrightarrow c  \ne \)\(\overrightarrow a \,\,( {\overrightarrow b .\overrightarrow c }) = \overrightarrow a \,\,[ {|\overrightarrow b |.|\overrightarrow c |\;\,\cos ( {\overrightarrow b ,\overrightarrow c })}]\)

B. Sai vì \((\overrightarrow a .\overrightarrow b)^2 = {[{\overrightarrow a .\overrightarrow b  = | {\overrightarrow a } |.| {\overrightarrow b }|\,\cos ( {\overrightarrow a ,\overrightarrow b })}]^2} = {\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}.{\cos ^2}( {\overrightarrow a ,\overrightarrow b } )\)\( \ne \;\;{\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}\)

C. Sai vì \(\overrightarrow a .\overrightarrow b = | {\overrightarrow a }|.| {\overrightarrow b } |\,\cos ( {\overrightarrow a ,\overrightarrow b }) \ne | {\overrightarrow a }|.| {\overrightarrow b }|\,\sin ( {\overrightarrow a ,\overrightarrow b })\)


Cùng chủ đề:

Giải bài 4. 26 trang 70 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 27 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 28 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 29 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 30 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 31 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 32 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 33 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 34 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 35 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 36 trang 72 SGK Toán 10 – Kết nối tri thức