Giải bài 4. 37 trang 72 SGK Toán 10 – Kết nối tri thức — Không quảng cáo

Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống Bài tập cuối chương IV Toán 10 Kết nối tri thức


Giải bài 4.37 trang 72 SGK Toán 10 – Kết nối tri thức

Cho vectơ a khác 0. Chứng minh rằng 1/|a|. a (hay còn được viết là a/|a| là một vectơ đơn vị, cùng hướng với vectơ a.

Đề bài

Cho vectơ \(\overrightarrow a  \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Lời giải chi tiết

Cho vectơ \(\overrightarrow a  \ne \overrightarrow 0 \). Chứng minh rằng \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay còn được viết là \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Lời giải chi tiết

Cách 1:

Gọi tọa độ của vectơ \(\overrightarrow a \) là (x; y).

Ta có: \(|\overrightarrow a |\, = \sqrt {{x^2} + {y^2}} \).

Đặt \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a \)

\( \Rightarrow \overrightarrow i  = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.(x;y) = \left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }};\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)\)

\( \Rightarrow |\overrightarrow i |\, = \sqrt {{{\left( {\frac{x}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2} + {{\left( {\frac{y}{{\sqrt {{x^2} + {y^2}} }}} \right)}^2}}  = \sqrt {\frac{{{x^2}}}{{{x^2} + {y^2}}} + \frac{{{y^2}}}{{{x^2} + {y^2}}}}  = 1\)

Mặt khác:

\(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = \frac{1}{{\sqrt {{x^2} + {y^2}} }}.\overrightarrow a \) và \(\frac{1}{{\sqrt {{x^2} + {y^2}} }} > 0\) với mọi \(x,y \ne 0\)

Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng.

Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).

Cách 2:

Với mọi vectơ \(\overrightarrow a  \ne \overrightarrow 0 \), ta có:  \(|\overrightarrow a |\; > 0 \Rightarrow k = \frac{1}{{|\overrightarrow a |}} > 0\). Đặt \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = k.\overrightarrow a \)

\(\begin{array}{l} \Rightarrow |\overrightarrow i |\, = \;|k.\overrightarrow a |\; = \;|k|.|\overrightarrow a |\;\\ \Leftrightarrow \left| {\overrightarrow {\,i} \,} \right| = k.|\overrightarrow a |\; = \frac{1}{{|\overrightarrow a |}}.|\overrightarrow a | = 1\end{array}\)

Mặt khác: \(\overrightarrow i  = \frac{1}{{|\overrightarrow a |}}\;.\overrightarrow a  = k.\overrightarrow a \) và \(k > 0\)

Do đó vectơ \(\overrightarrow i \) và \(\overrightarrow a \) cùng hướng.

Vậy \(\frac{1}{{|\overrightarrow a |}}\;\overrightarrow a \) (hay \(\frac{{\overrightarrow a }}{{|\overrightarrow a |}}\)) là một vectơ đơn vị, cùng hướng với vectơ \(\overrightarrow a \).


Cùng chủ đề:

Giải bài 4. 32 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 33 trang 71 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 34 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 35 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 36 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 37 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 38 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 4. 39 trang 72 SGK Toán 10 – Kết nối tri thức
Giải bài 5 trang 95 SGK Toán 10 – Kết nối tri thức
Giải bài 5. 1 trang 77 SGK Toán 10 – Kết nối tri thức
Giải bài 5. 2 trang 77 SGK Toán 10 – Kết nối tri thức