Giải bài 4 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 1. Điểm, đường thẳng và mặt phẳng trong không gian


Giải bài 4 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho \(EB > AE,AF > FC,BG > GD\). Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).

Đề bài

Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho \(EB > AE,AF > FC,BG > GD\). Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giao tuyến giữa hai mặt phẳng để tìm giao tuyến: Đường thẳng d chung giữa hai mặt phẳng (P) và (Q) được gọi là giao tuyến của (P) và (Q), kí hiệu  \(d = \left( P \right) \cap \left( Q \right)\).

Lời giải chi tiết

Ta có, EF là giao tuyến của hai mặt phẳng (EFG) và (ABC).

Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.

Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.

Vì \(\left\{ \begin{array}{l}H \in CD \subset \left( {ACD} \right),H \in IG \subset \left( {EFG} \right)\\F \in AC \subset \left( {ACD} \right),F \in FE \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (ACD) là FH.

Vì \(\left\{ \begin{array}{l}H \in CD \subset \left( {BCD} \right),H \in IG \subset \left( {EFG} \right)\\G \in BD \subset \left( {BCD} \right),G \in FG \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (BCD) là GH.

Vì \(\left\{ \begin{array}{l}E \in AB \subset \left( {ABD} \right),E \in FE \subset \left( {EFG} \right)\\G \in BD \subset \left( {ABD} \right),G \in FG \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (ABD) là GE.


Cùng chủ đề:

Giải bài 4 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 96 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 100 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 102 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 4 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 117 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 122 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 128 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 4 trang 133 sách bài tập toán 11 - Chân trời sáng tạo tập 1