Giải bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diều — Không quảng cáo

Toán 8, giải toán lớp 8 cánh diều Bài 3. Phép nhân, phép chia phân thức đại số Toán 8 cán


Giải bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diều

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

Đề bài

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

a) \(A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\);

b) \(B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng các phép nhân, chia phân thức đại số để tính toán các biểu thức đại số về kết quả không chưa các biến.

Lời giải chi tiết

\(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\)

Vậy A = 2 không phụ thuộc vào giá trị của các biến

\(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\)

Vậy B = 1 không phụ thuộc vào giá trị của biến x


Cùng chủ đề:

Giải bài 4 trang 36 SGK Toán 8 – Cánh diều
Giải bài 4 trang 37 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 38 SGK Toán 8 – Cánh diều
Giải bài 4 trang 43 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 44 SGK Toán 8 – Cánh diều
Giải bài 4 trang 48 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 49 SGK Toán 8 tập 1 - Cánh diều
Giải bài 4 trang 49 SGK Toán 8 – Cánh diều
Giải bài 4 trang 50 SGK Toán 8 – Cánh diều
Giải bài 4 trang 57 SGK Toán 8 – Cánh diều
Giải bài 4 trang 58 SGK Toán 8 tập 1 - Cánh diều