Giải bài 5 trang 131 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập ôn tập cuối năm


Giải bài 5 trang 131 vở thực hành Toán 9 tập 2

Kí hiệu (left( {{d_1}} right)) là đường thẳng (x + 2y = 4,left( {{d_2}} right)) là đường thẳng (x - y = 1). a) Vẽ (left( {{d_1}} right)) và (left( {{d_2}} right)) trên cùng một mặt phẳng tọa độ. b) Giải hệ phương trình (left{ begin{array}{l}x + 2y = 4\x - y = 1end{array} right.) để tìm tọa độ giao điểm của hai đường thẳng (left( {{d_1}} right)) và (left( {{d_2}} right)).

Đề bài

Kí hiệu \(\left( {{d_1}} \right)\) là đường thẳng \(x + 2y = 4,\left( {{d_2}} \right)\) là đường thẳng \(x - y = 1\).

a) Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng một mặt phẳng tọa độ.

b) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) để tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Phương pháp giải - Xem chi tiết

a) Đường thẳng \(\left( {{d_1}} \right)\) đi qua hai điểm \(A\left( {0;2} \right)\) và điểm \(B\left( {4;0} \right)\).

Đường thẳng \(\left( {{d_2}} \right)\) đi qua hai điểm \(C\left( {1;0} \right)\) và \(D\left( {0; - 1} \right)\).

Biểu diễn các điểm A, B, C, D trên cùng một mặt phẳng tọa độ Oxy.

b) Giải hệ phương trình bằng phương pháp thế.

Lời giải chi tiết

a) Nhận xét:

Đường thẳng \(\left( {{d_1}} \right)\) đi qua hai điểm \(A\left( {0;2} \right)\) và điểm \(B\left( {4;0} \right)\).

Đường thẳng \(\left( {{d_2}} \right)\) đi qua hai điểm \(C\left( {1;0} \right)\) và \(D\left( {0; - 1} \right)\).

b) Xét hệ hai phương trình bậc nhất hai ẩn:

\(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) .

Từ phương trình thứ hai suy ra \(x = y + 1\). Thế vào phương trình thứ nhất ta được:

\(y + 1 + 2y = 4\), hay \(3y = 3\), suy ra \(y = 1\).

Từ đó tìm được \(x = 2\).

Vậy giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là điểm (2; 1).


Cùng chủ đề:

Giải bài 5 trang 118 vở thực hành Toán 9
Giải bài 5 trang 121 vở thực hành Toán 9 tập 2
Giải bài 5 trang 122, 123 vở thực hành Toán 9
Giải bài 5 trang 123 vở thực hành Toán 9 tập 2
Giải bài 5 trang 126, 127 vở thực hành Toán 9 tập 2
Giải bài 5 trang 131 vở thực hành Toán 9 tập 2
Giải bài 6 trang118 vở thực hành Toán 9 tập 2
Giải bài 6 trang 8 vở thực hành Toán 9 tập 2
Giải bài 6 trang 9 vở thực hành Toán 9
Giải bài 6 trang 14 vở thực hành Toán 9
Giải bài 6 trang 14 vở thực hành Toán 9 tập 2