Giải bài 5 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo Bài 2. Phép tịnh tiến Chuyên đề học tập Toán 11 Chân tr


Giải bài 5 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Trong Hình 9, tìm các vectơ \(\vec u\) và \(\vec v\) sao cho phép tịnh tiến \({T_{\vec u}}\)biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến \({T_{\vec v}}\) biến hình mũi tên (A) thành hình mũi tên (C).

Đề bài

Trong Hình 9, tìm các vectơ \(\vec u\) \(\vec v\) sao cho phép tịnh tiến \({T_{\vec u}}\) biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến \({T_{\vec v}}\) biến hình mũi tên (A) thành hình mũi tên (C).

Phương pháp giải - Xem chi tiết

Quan sát hình 9 để làm

Lời giải chi tiết

+ Gọi \({E_1}\)  là một điểm trên hình mũi tên (A) và \(\vec u\) có phương song song với trục đối xứng của hình mũi tên (A), độ dài bằng độ dài từ điểm đầu tới điểm cuối của mũi tên (A) (hình vẽ).

Lấy điểm \({E_2}\;\) sao cho \(\overrightarrow {{E_1}{E_2}}  = \vec u\)

Khi đó \({E_2}\;\) là một điểm trên hình mũi tên (B) có vị trí tương ứng với điểm \({E_1}\)  trên hình mũi tên (A).

Tương tự như vậy, với mỗi điểm \({M_1}\)  bất kì trên hình mũi tên (A), ta lấy điểm \({M_2}\)  sao cho \(\overrightarrow {{M_1}{M_2}}  = \vec u\)  thì ta được tập hợp các điểm \({M_2}\)  tạo thành hình mũi tên (B).

Do đó phép tịnh tiến theo \(\vec u\)  biến hình mũi tên (A) thành hình mũi tên (B).

+ Ta gọi (D) là hình mũi tên nằm bên dưới hình mũi tên (A) và bên trái hình mũi tên (C) (như hình vẽ).

Gọi \({E_3}\) là một điểm trên hình mũi tên (D) có vị trí tương ứng với điểm E 1 trên hình mũi tên (A).

Giả sử \(\vec x\) là vectơ có phương vuông góc với trục đối xứng của hình mũi tên (A), độ dài bằng độ dài từ điểm E 1 đến điểm E 3 (hình vẽ).

Tức là, \(\vec x = \overrightarrow {{E_1}{E_3}} \)

Lấy điểm \({E_4}\) sao cho tứ giác \({E_1}{E_2}{E_4}{E_3}\;\)  là hình bình hành.

Áp dụng quy tắc hình bình hành, ta được \(\overrightarrow {{E_1}{E_4}}  = \overrightarrow {{E_1}{E_2}}  + \overrightarrow {{E_1}{E_3}}  = \vec u + \vec x\).

Lúc này, ta thấy \({E_4}\) là một điểm trên hình mũi tên (C) có vị trí tương ứng với điểm \({E_1}\)  trên hình mũi tên (A).

Tương tự như vậy, với mỗi điểm \({M_1}\) bất kì trên hình mũi tên (A), ta lấy điểm \({M_4}\)  sao cho \(\overrightarrow {{M_1}{M_4}}  = \vec u + \vec x\) thì ta được tập hợp các điểm M 4 tạo thành hình mũi tên (C).

Do đó phép tịnh tiến theo \(\vec v = \vec u + \vec x\) biến hình mũi tên (A) thành hình mũi tên (C).


Cùng chủ đề:

Giải bài 4 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 4 trang 80 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 4 trang 89 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 4 trang 90 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo