Processing math: 100%

Giải bài 5 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Chân trời sáng tạo Bài tập cuối chuyên đề 1 Chuyên đề học tập Toán 11 Chân


Giải bài 5 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng?

Đề bài

Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng?

A. Không có.

B. Một.

C. Hai.

D. Vô số.

Phương pháp giải - Xem chi tiết

Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm MO thành điểm M’ sao cho O  là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu ĐO. Điểm O được gọi là tâm đối xứng.

Lời giải chi tiết

Đáp án đúng là: B

Giả sử (H) là hình gồm hai đường tròn phân biệt có cùng bán kính (O; R) và (O’; R).

Gọi I là trung điểm của đoạn OO’.

Suy ra O=ĐI(O).

Gọi A là điểm bất kì trên (O;R).

Lấy điểm A’ sao cho I là trung điểm của AA’. Khi đó A=ĐI(A).

Dễ dàng chứng minh được ΔOAI=ΔOAI(c.g.c)

Suy ra OA=OA  (hai cạnh tương ứng)

OA=R  nên O’A’ = R hay A’ nằm trên (O;R).

Khi đó ta luôn xác định được một điểm A’ trên hình (H) sao cho A=ĐI(A).

Tương tự như vậy, ta chọn các điểm khác bất kì trên hình (H), ta đều xác định được ảnh của các điểm đó qua Đ I trên hình (H).

Vì vậy I là tâm đối xứng của hình (H).

Với mỗi điểm M bất kì sao cho MI, ta luôn có MOMO.

Do đó O’ không phải là ảnh của O qua ĐM.

Vậy hình gồm hai đường tròn phân biệt có cùng bán kính có 1 tâm đối xứng duy nhất là trung điểm của đoạn nối tâm.

Do đó ta chọn phương án B.


Cùng chủ đề:

Giải bài 5 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 49 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo
Giải bài 5 trang 80 Chuyên đề học tập Toán 11 Chân trời sáng tạo