Giải bài 51 trang 62 SBT toán 10 - Cánh diều — Không quảng cáo

SBT Toán 10 - Giải SBT Toán 10 - Cánh diều Bài tập cuối chương III - SBT Toán 10 Cánh diều


Giải bài 51 trang 62 SBT toán 10 - Cánh diều

Giải các bất phương trình bậc hai sau:

Đề bài

Giải các bất phương trình bậc hai sau:

a) \(4{x^2} - 9x + 5 \le 0\)

b) \( - 3{x^2} - x + 4 > 0\)

c) \(36{x^2} - 12x + 1 > 0\)

d) \( - 7{x^2} + 5x + 2 < 0\)

Phương pháp giải - Xem chi tiết

Sử dụng định lý về dấu của tam thức bậc hai

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệm của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về dấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

+ Nếu \(\Delta  < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)

+ Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)

Lời giải chi tiết

a) \(4{x^2} - 9x + 5 \le 0\)

Tam thức bậc hai \(4{x^2} - 9x + 5\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{5}{4}\) và có hệ số \(a = 4 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(4{x^2} - 9x + 5\) mang dấu “-” là \(\left[ {1;\frac{5}{4}} \right]\)

b) \( - 3{x^2} - x + 4 > 0\)

Tam thức bậc hai \( - 3{x^2} - x + 4\) có hai nghiệm \({x_1} =  - \frac{4}{3};{x_2} = 1\) và có hệ số \(a =  - 3 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 3{x^2} - x + 4\) mang dấu “+” là \(\left( { - \frac{4}{3};1} \right)\)

c) \(36{x^2} - 12x + 1 > 0\)

Tam thức bậc hai \(36{x^2} - 12x + 1\) có nghiệm kép \({x_0} = \frac{1}{6}\) và có hệ số \(a = 36 > 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(36{x^2} - 12x + 1\) mang dấu “+” là \(\mathbb{R}\backslash \left\{ {\frac{1}{6}} \right\}\)

d) \( - 7{x^2} + 5x + 2 < 0\)

Tam thức bậc hai \( - 7{x^2} + 5x + 2\) có hai nghiệm \({x_1} = \frac{{ - 2}}{7};{x_2} = 1\) và có hệ số \(a =  - 7 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 7{x^2} + 5x + 2\) mang dấu “-” là \(\left( { - \infty ;\frac{{ - 2}}{7}} \right) \cup \left( {1; + \infty } \right)\)


Cùng chủ đề:

Giải bài 50 trang 18 sách bài tập toán 10 - Cánh diều
Giải bài 50 trang 62 SBT toán 10 - Cánh diều
Giải bài 50 trang 89 SBT toán 10 - Cánh diều
Giải bài 50 trang 99 SBT toán 10 - Cánh diều
Giải bài 51 trang 17 SBT toán 10 - Cánh diều
Giải bài 51 trang 62 SBT toán 10 - Cánh diều
Giải bài 51 trang 89 SBT toán 10 - Cánh diều
Giải bài 51 trang 99 SBT toán 10 - Cánh diều
Giải bài 52 trang 17 SBT toán 10 - Cánh diều
Giải bài 52 trang 62 SBT toán 10 - Cánh diều
Giải bài 52 trang 89 SBT toán 10 - Cánh diều