Giải Bài 54 trang 26 sách bài tập toán 7 tập 1 - Cánh diều — Không quảng cáo

SBT Toán 7 - Giải SBT Toán 7 - Cánh diều Bài tập cuối chương 1 - Cánh diều


Giải Bài 54 trang 26 sách bài tập toán 7 tập 1 - Cánh diều

So sánh:

Đề bài

So sánh:

a) \({2^{24}}\) và \({2^{16}}\);

b) \({\left( { - \dfrac{1}{5}} \right)^{300}}\) và \({\left( { - \dfrac{1}{3}} \right)^{500}}\);

c) \({\left( {\dfrac{{32}}{{17}}} \right)^{15}}\) và \({\left( {\dfrac{{17}}{{31}}} \right)^{30}}\).

Phương pháp giải - Xem chi tiết

a) Ta so sánh hai số có cùng cơ số.

b) Ta tách hai số thành các số có chung lũy thừa.

c) Ta so sánh với số trung gian là 1.

Lời giải chi tiết

a) \({2^{24}}\) và \({2^{16}}\)

Ta có: 24 > 16 nên \({2^{24}}\) > \({2^{16}}\).

b) \({\left( { - \dfrac{1}{5}} \right)^{300}}\) và \({\left( { - \dfrac{1}{3}} \right)^{500}}\)

Ta có:

\({\left( { - \dfrac{1}{5}} \right)^{300}} = {\left( { - \dfrac{1}{5}} \right)^{{3^{100}}}} = {\left( { - \dfrac{{{1^3}}}{{{5^3}}}} \right)^{100}} = {\left( { - \dfrac{1}{{125}}} \right)^{100}} = {\left( {\dfrac{1}{{125}}} \right)^{100}}\)

\({\left( { - \dfrac{1}{3}} \right)^{500}} = {\left( { - \dfrac{1}{3}} \right)^{{5^{100}}}} = {\left( { - \dfrac{{{1^5}}}{{{3^5}}}} \right)^{100}} = {\left( { - \dfrac{1}{{243}}} \right)^{100}} = {\left( {\dfrac{1}{{243}}} \right)^{100}}\)

Mà \(\dfrac{1}{{125}} > \dfrac{1}{{243}}\) nên: \({\left( {\dfrac{1}{{125}}} \right)^{100}} > {\left( {\dfrac{1}{{243}}} \right)^{100}}\).

\( \Rightarrow {\left( { - \dfrac{1}{125}} \right)^{100}}\) < \({\left( { - \dfrac{1}{243}} \right)^{100}}\)

Vậy \({\left( { - \dfrac{1}{5}} \right)^{300}}\) < \({\left( { - \dfrac{1}{3}} \right)^{500}}\).

c) \({\left( {\dfrac{{32}}{{17}}} \right)^{15}}\) và \({\left( {\dfrac{{17}}{{31}}} \right)^{30}}\).

Ta có:

\(\dfrac{{32}}{{17}} > 1 \Rightarrow {\left( {\dfrac{{32}}{{17}}} \right)^{15}} > 1\)

\(0 < \dfrac{{17}}{{31}} < 1 \Rightarrow {\left( {\dfrac{{17}}{{31}}} \right)^{30}} < 1\)

Suy ra: \({\left( {\dfrac{{17}}{{31}}} \right)^{30}} < 1 < {\left( {\dfrac{{32}}{{17}}} \right)^{15}}\).

Vậy \({\left( {\dfrac{{32}}{{17}}} \right)^{15}}\) > \({\left( {\dfrac{{17}}{{31}}} \right)^{30}}\).


Cùng chủ đề:

Giải Bài 52 trang 57 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 52 trang 85 sách bài tập toán 7 - Cánh diều
Giải Bài 53 trang 26 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 53 trang 57 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 53 trang 85 sách bài tập toán 7 - Cánh diều
Giải Bài 54 trang 26 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 54 trang 57 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 54 trang 85 sách bài tập toán 7 - Cánh diều
Giải Bài 55 trang 26 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 55 trang 59 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 55 trang 85 sách bài tập toán 7 - Cánh diều