Giải bài 6. 2 trang 6 sách bài tập toán 10 - Kết nối tri thức với cuộc sống — Không quảng cáo

Bài 15. Hàm số - SBT Toán 10 KNTT


Giải bài 6.2 trang 6 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Tìm tập xác định của mỗi hàm số sau:

Đề bài

Tìm tập xác định của mỗi hàm số sau:

a) \(f(x) = \frac{1}{{2x - 4}}\)

b) \(f(x) = \frac{{{x^2}}}{{{x^2} - 3x + 2}}\)

c) \(f(x) = \sqrt {2x - 3} \)

d) \(f(x) = \frac{3}{ \sqrt {4-x}}\)

Phương pháp giải - Xem chi tiết

\(\frac{A}{B}\) có nghĩa khi \(B \ne 0\)

\(\sqrt A \) có nghĩa khi \(f(x) = \frac{3}{{\sqrt {4 - x} }}\)

\(\frac{A}{{\sqrt B }}\) có nghĩa khi  \(\sqrt B  \ne 0\) và \(B \ge 0\), tức là \(B > 0\)

Lời giải chi tiết

a) \(f(x) = \frac{1}{{2x - 4}}\)

Ta có: \(\frac{1}{{2x - 4}}\) xác định khi \(2x - 4 \ne 0 \Leftrightarrow x \ne 2\)

Vậy tập xác định của hàm số \(f(x) = \frac{1}{{2x - 4}}\) là \(D = \mathbb{R}\backslash {\rm{\{ }}2\} \)

b) \(f(x) = \frac{{{x^2}}}{{{x^2} - 3x + 2}}\)

Ta có: \(\frac{{{x^2}}}{{{x^2} - 3x + 2}}\) xác định khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1,x \ne 2\)

Vậy tập xác định của hàm số \(f(x) = \frac{{{x^2}}}{{{x^2} - 3x + 2}}\) là \(D = \mathbb{R}\backslash {\rm{\{ 1;}}2\} \)

c) \(f(x) = \sqrt {2x - 3} \)

Ta có: \(\sqrt {2x - 3} \) xác định khi \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Vậy tập xác định của hàm số \(f(x) = \sqrt {2x - 3} \) là \(D = \left[ {\frac{3}{2}; + \infty } \right)\)

d) \(f(x) = \frac{3}{{\sqrt {4 - x} }}\)

Ta có: \(\frac{3}{{\sqrt {4 - x} }}\) xác định khi \(4 - x > 0 \Leftrightarrow x < 4\)

Vậy tập xác định của hàm số \(f(x) = \frac{3}{{\sqrt {4 - x} }}\) là \(D = ( - \infty ;4)\)


Cùng chủ đề:

Giải bài 5. 34 trang 83 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 5. 35 trang 84 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 5. 36 trang 84 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6 trang 71 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 1 trang 6 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 2 trang 6 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 3 trang 7 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 4 trang 7 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 5 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 6 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
Giải bài 6. 7 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống