Giải bài 6 trang 123, 124 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập cuối chương V trang 122, 123, 124 Vở thực hành


Giải bài 6 trang 123, 124 vở thực hành Toán 9

Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O. a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao? b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

Đề bài

Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O.

a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao?

b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(OA = OC = R\), \(OB = OD = R\) nên hai điểm C và D nằm trên đường tròn (O).

b) + Tính số đo cung nhỏ AB và cung lớn AB.

+ Độ dài cung lớn AB là \(l = \frac{{270}}{{180}}.\pi .4\).

+ Diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OB là \(S = \frac{{90}}{{360}}.\pi {.4^2}\)

Lời giải chi tiết

a) Cách 1. Gọi bán kính của đường tròn là R. Do C và D là các điểm đối xứng với A và D qua O nên \(OA = OC = R\) và \(OB = OD = R\).

Do đó, hai điểm C và D nằm trên đường tròn (O).

Cách 2. Do đường tròn là hình có tâm đối xứng là O nên khi \(A \in \left( O \right)\) và \(B \in \left( O \right)\) thì hai điểm đối xứng với A và B qua O cùng nằm trên (O).

b) (H.5.46) Vì ABCD là hình vuông nên \(AC \bot BD\) hay \(\widehat {AOB} = {90^o}\). Suy ra số đo của cung nhỏ AB là 90 độ.

Số đo của cung lớn AB (cũng là cung ACB) là: .

Độ dài cung lớn AB là \(l = \frac{{270}}{{180}}.\pi .4 = 6\pi \left( {cm} \right)\).

Diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OB là \(S = \frac{{90}}{{360}}.\pi {.4^2} = 4\pi \left( {c{m^2}} \right)\).


Cùng chủ đề:

Giải bài 6 trang 107 vở thực hành Toán 9
Giải bài 6 trang 109 vở thực hành Toán 9 tập 2
Giải bài 6 trang 110, 111 vở thực hành Toán 9
Giải bài 6 trang 113 vở thực hành Toán 9 tập 2
Giải bài 6 trang 121 vở thực hành Toán 9 tập 2
Giải bài 6 trang 123, 124 vở thực hành Toán 9
Giải bài 6 trang 123, 124 vở thực hành Toán 9 tập 2
Giải bài 6 trang 127 vở thực hành Toán 9 tập 2
Giải bài 6 trang 132, 133 vở thực hành Toán 9 tập 2
Giải bài 7 trang 8 vở thực hành Toán 9 tập 2
Giải bài 7 trang 9 vở thực hành Toán 9