Giải bài 6 trang 92 SGK Toán 10 tập 1 – Cánh diều — Không quảng cáo

Toán 10, giải toán lớp 10 cánh diều Bài 5. Tích của vecto với một số Toán 10 Cánh diều


Giải bài 6 trang 92 SGK Toán 10 tập 1 – Cánh diều

Cho ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABC.

Đề bài

Cho ABCD là hình bình hành. Đặt \(\overrightarrow {AB}  = \overrightarrow a ,\overrightarrow {AD}  = \overrightarrow b .\) Gọi G là trọng tâm của tam giác ABC. Biểu thị các vecto \(\overrightarrow {AG} ,\overrightarrow {CG} \) theo hai vecto \(\overrightarrow a ,\overrightarrow b .\)

Phương pháp giải - Xem chi tiết

Quy tắc cộng: \(\overrightarrow {BA}  + \overrightarrow {AD}  = \overrightarrow {BD} \) với B, A, D bất kì.

Bước 1: Biểu diễn vecto \(\overrightarrow {BD} \) theo hai vecto \(\overrightarrow a ,\overrightarrow b .\)

Bước 2: Biểu diễn vecto \(\overrightarrow {BG} \) theo hai vecto \(\overrightarrow a ,\overrightarrow b \) dựa vào đẳng thức \(\overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD} \)

Bước 3: Biểu thị các vecto \(\overrightarrow {AG} ,\overrightarrow {CG} \) theo vecto \(\overrightarrow {BG} \) và \(\overrightarrow a ,\overrightarrow b .\)

Lời giải chi tiết

Cách 1:

Gọi O là giao điểm của AC và BD.

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

Cách 2:

Gọi AE, CF là các trung tuyến trong tam giác ABC.

Ta có:

\(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AE}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)} \right] \\= \frac{1}{3}\left( {2\overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {CG}  = \frac{2}{3}\overrightarrow {CF}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) + \overrightarrow {CB} } \right] = \frac{1}{3}\left( {2\overrightarrow {CB}  + \overrightarrow {CD} } \right) = \frac{1}{3}\left( { - 2\overrightarrow {AD}  - \overrightarrow {AB} } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b \)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)


Cùng chủ đề:

Giải bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều
Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều
Giải bài 6 trang 80 SGK Toán 10 tập 2 – Cánh diều
Giải bài 6 trang 86 SGK Toán 10 tập 2 – Cánh diều
Giải bài 6 trang 87 SGK Toán 10 tập 1 – Cánh diều
Giải bài 6 trang 92 SGK Toán 10 tập 1 – Cánh diều
Giải bài 6 trang 92 SGK Toán 10 tập 2 – Cánh diều
Giải bài 6 trang 98 SGK Toán 10 tập 1 – Cánh diều
Giải bài 6 trang 100 SGK Toán 10 tập 1 – Cánh diều
Giải bài 6 trang 102 SGK Toán 10 tập 2 – Cánh diều
Giải bài 6 trang 103 SGK Toán 10 tập 2 – Cánh diều