Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo — Không quảng cáo

Bài 1. Dấu của tam thức bậc hai - SBT Toán 10 CTST


Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\)

Đề bài

Chứng minh rằng

a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\)

c) \( - {x^2} <  - 2x + 3\) với mọi \(x \in \mathbb{R}\)

Lời giải chi tiết

a) Tam thức \(2{x^2} + \sqrt 3 x + 1\) có \(\Delta  = {\left( {\sqrt 3 } \right)^2} - 4.2 =  - 5 < 0\) và \(a = 2 > 0\)

Suy ra \(2{x^2} + \sqrt 3 x + 1 > 0\forall x \in \mathbb{R}\)  (đpcm)

b) Tam thức \({x^2} + x + \frac{1}{4}\) có \(\Delta  = {1^2} - 4.\frac{1}{4} = 0\), có nghiệm kép \(x =  - \frac{1}{2}\) và \(a = 1 > 0\)

Suy ra \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\)  (đpcm)

c) \( - {x^2} <  - 2x + 3\) với mọi \(x \in \mathbb{R}\)         \( \Leftrightarrow {x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)

Xét tam thức \({x^2} - 2x + 3\) ta có \(\Delta  = {\left( { - 2} \right)^2} - 4.3 =  - 8 < 0\) và \(a = 1 > 0\)

Suy ra \({x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)\( \Leftrightarrow  - {x^2} <  - 2x + 3\)        (đpcm)


Cùng chủ đề:

Giải bài 6 trang 113 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 6 trang 123 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 6 trang 130 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 6 trang 131 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 7 trang 9 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo
Giải bài 7 trang 13 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 7 trang 14 SBT toán 10 - Chân trời sáng tạo
Giải bài 7 trang 17 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 7 trang 18 sách bài tập toán 10 - Chân trời sáng tạo
Giải bài 7 trang 22 SBT toán 10 - Chân trời sáng tạo