Giải bài 7 trang 111 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Luyện tập chung trang 107 trang 107, 108, 109 Vở thực h


Giải bài 7 trang 111 vở thực hành Toán 9

Cho đường tròn (O), đường kính (AB = 4sqrt 3 cm). Điểm C thuộc đường tròn tâm O sao cho (widehat {AOC} = {60^o}). Tính diện tích hình viên phân giới hạn bởi dây AC và cung nhỏ AC.

Đề bài

Cho đường tròn (O), đường kính \(AB = 4\sqrt 3 cm\). Điểm C thuộc đường tròn tâm O sao cho \(\widehat {AOC} = {60^o}\). Tính diện tích hình viên phân giới hạn bởi dây AC và cung nhỏ AC.

Phương pháp giải - Xem chi tiết

Diện tích hình viên phân bằng diện tích hình quạt tròn ứng với cung AC trừ đi diện tích tam giác AOC.

Lời giải chi tiết

(H.5.26)

Diện tích hình quạt tròn AOC là: \({S_{AOC}} = \frac{{60}}{{360}}.\pi .{\left( {2\sqrt 3 } \right)^2} = 2\pi \left( {c{m^2}} \right)\).

Xét tam giác AOC có \(\widehat {AOC} = {60^o}\) và \(OA = OC\left( { = R} \right)\) nên tam giác AOC đều có độ dài cạnh là \(2\sqrt 3 \)cm

Gọi CH là đường cao của tam giác AOC. Khi đó, \(CH = CO.\sin {60^o} = 2\sqrt 3 .\frac{{\sqrt 3 }}{2} = 3\left( {cm} \right)\)

Diện tích tam giác AOC là: \({S_{AOC}} = \frac{1}{2}CH.AC = \frac{1}{2}.3.2\sqrt 3  = 3\sqrt 3 \left( {c{m^2}} \right)\)

Diện tích hình viên phân cần tính là: \(S = {S_{AOC}} - {S_{AOC}} = 2\pi  - 3\sqrt 3 \left( {c{m^2}} \right)\)


Cùng chủ đề:

Giải bài 7 trang 94 vở thực hành Toán 9
Giải bài 7 trang 97 vở thực hành Toán 9 tập 2
Giải bài 7 trang 100, 101 vở thực hành Toán 9 tập 2
Giải bài 7 trang 105 vở thực hành Toán 9 tập 2
Giải bài 7 trang 109 vở thực hành Toán 9 tập 2
Giải bài 7 trang 111 vở thực hành Toán 9
Giải bài 7 trang 113 vở thực hành Toán 9 tập 2
Giải bài 7 trang 118 vở thực hành Toán 9 tập 2
Giải bài 7 trang 124 vở thực hành Toán 9
Giải bài 7 trang 124 vở thực hành Toán 9 tập 2
Giải bài 7 trang 127 vở thực hành Toán 9 tập 2