Processing math: 100%

Giải Bài 78 trang 90 sách bài tập toán 7 - Cánh diều — Không quảng cáo

SBT Toán 7 - Giải SBT Toán 7 - Cánh diều Bài 10: Tính chất ba đường trung tuyến của tam giác - C


Giải Bài 78 trang 90 sách bài tập toán 7 - Cánh diều

Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.

Đề bài

Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.

a) Chứng minh DE = FN và tam giác DFN là tam giác cân.

b) Trên tia đối của tia FD lấy điểm A sao cho FA = FD. Chứng minh F là trọng tâm của tam giác NEA.

c) Chứng minh tam giác DNA là tam giác vuông.

d) Kẻ EB vuông góc với NA (B ∈ NA). Chứng minh ba điểm E, F, B thẳng hàng.

Phương pháp giải - Xem chi tiết

- Chứng minh: tam giác DFN có DF = FN nên tam giác DFN cân tại F.

- Chứng minh: NEA có AM là trung tuyến và AF=23AM nên F là trọng tâm của tam giác NEA.

- Chứng minh: EF vuông góc NA; EB vuông góc với NA suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.

Lời giải chi tiết

a) Xét ∆DME và ∆FMN có:

DM = FM (vì M là trung điểm của DF),

^DME=^FMN (hai góc đối đỉnh),

ME = MN (giả thiết)

Do đó ∆DME = ∆FMN (c.g.c)

Suy ra DE = FN (hai cạnh tương ứng).

Vì tam giác DFE cân tại D nên DE = DF.

Do đó DE = DF = FN.

Tam giác DFN có DF = FN nên tam giác DFN cân tại F.

Vậy tam giác DFN cân tại F.

b) Ta có MD=MF=12DFvà FA = FD nên MF=12FA

Mà AF + FM = AM nên AF + 1212AF = AM

Suy ra 23AF=AM hay AF=23AM.

Trong tam giác NEA có AM là trung tuyến và AF=23AM nên F là trọng tâm của tam giác NEA.

Vậy F là trọng tâm của tam giác NEA.

c) • Ta có: DF = FN, DF = FA nên AF = FN.

Suy ra tam giác FNA cân tại F.

Do đó ^FAN=^FNA (hai góc ở đáy)

•Vì tam giác DFN cân tại F nên ^FDN=^FND (hai góc ở đáy)

• Xét ∆DNA có ^ADN+^DNA+^NAD=180 (tổng ba góc của một tam giác)

Suy ra ^FND+^DNA+^FNA=180

Hay (^FND+^FNA)+^DNA=^DNA+^DNA=180

Suy ra 2^DNA=180

Do đó ^DNA=1802=90

Vậy tam giác DNA là tam giác vuông tại N.

d) Xét ∆DMN và ∆FME có:

DM = FM (vì M là trung điểm của DF),

^DMN=^FME (hai góc đối đỉnh),

EM = MN (giả thiết)

Do đó ∆DMN = ∆FME (c.g.c)

Suy ra ^MDN=^MFE (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Nên EF // DN

Lại có ^DNA=90 (chứng minh câu c) hay DN ⊥ NA.

Suy ra EF ⊥ NA (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại).

Mặt khác EB ⊥ NA (giả thiết)

Suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.

Vậy ba điểm E, F, B thẳng hàng.


Cùng chủ đề:

Giải Bài 76 trang 64 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 76 trang 90 sách bài tập toán 7 - Cánh diều
Giải Bài 77 trang 64 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 77 trang 90 sách bài tập toán 7 - Cánh diều
Giải Bài 78 trang 65 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 78 trang 90 sách bài tập toán 7 - Cánh diều
Giải Bài 79 trang 65 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 79 trang 92 sách bài tập toán 7 - Cánh diều
Giải Bài 80 trang 65 sách bài tập toán 7 tập 1 - Cánh diều
Giải Bài 80 trang 92 sách bài tập toán 7 - Cánh diều
Giải Bài 81 trang 65 sách bài tập toán 7 tập 1 - Cánh diều