Giải Bài 78 trang 90 sách bài tập toán 7 - Cánh diều
Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.
Đề bài
Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.
a) Chứng minh DE = FN và tam giác DFN là tam giác cân.
b) Trên tia đối của tia FD lấy điểm A sao cho FA = FD. Chứng minh F là trọng tâm của tam giác NEA.
c) Chứng minh tam giác DNA là tam giác vuông.
d) Kẻ EB vuông góc với NA (B ∈ NA). Chứng minh ba điểm E, F, B thẳng hàng.
Phương pháp giải - Xem chi tiết
- Chứng minh: tam giác DFN có DF = FN nên tam giác DFN cân tại F.
- Chứng minh: NEA có AM là trung tuyến và AF=23AM nên F là trọng tâm của tam giác NEA.
- Chứng minh: EF vuông góc NA; EB vuông góc với NA suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.
Lời giải chi tiết
a) Xét ∆DME và ∆FMN có:
DM = FM (vì M là trung điểm của DF),
^DME=^FMN (hai góc đối đỉnh),
ME = MN (giả thiết)
Do đó ∆DME = ∆FMN (c.g.c)
Suy ra DE = FN (hai cạnh tương ứng).
Vì tam giác DFE cân tại D nên DE = DF.
Do đó DE = DF = FN.
Tam giác DFN có DF = FN nên tam giác DFN cân tại F.
Vậy tam giác DFN cân tại F.
b) Ta có MD=MF=12DFvà FA = FD nên MF=12FA
Mà AF + FM = AM nên AF + 1212AF = AM
Suy ra 23AF=AM hay AF=23AM.
Trong tam giác NEA có AM là trung tuyến và AF=23AM nên F là trọng tâm của tam giác NEA.
Vậy F là trọng tâm của tam giác NEA.
c) • Ta có: DF = FN, DF = FA nên AF = FN.
Suy ra tam giác FNA cân tại F.
Do đó ^FAN=^FNA (hai góc ở đáy)
•Vì tam giác DFN cân tại F nên ^FDN=^FND (hai góc ở đáy)
• Xét ∆DNA có ^ADN+^DNA+^NAD=180∘ (tổng ba góc của một tam giác)
Suy ra ^FND+^DNA+^FNA=180∘
Hay (^FND+^FNA)+^DNA=^DNA+^DNA=180∘
Suy ra 2^DNA=180∘
Do đó ^DNA=180∘2=90∘
Vậy tam giác DNA là tam giác vuông tại N.
d) Xét ∆DMN và ∆FME có:
DM = FM (vì M là trung điểm của DF),
^DMN=^FME (hai góc đối đỉnh),
EM = MN (giả thiết)
Do đó ∆DMN = ∆FME (c.g.c)
Suy ra ^MDN=^MFE (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Nên EF // DN
Lại có ^DNA=90∘ (chứng minh câu c) hay DN ⊥ NA.
Suy ra EF ⊥ NA (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại).
Mặt khác EB ⊥ NA (giả thiết)
Suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.
Vậy ba điểm E, F, B thẳng hàng.