Giải bài 8.9 trang 46 sách bài tập toán 9 - Kết nối tri thức tập 2
Bạn Bình gieo một đồng xu cân đối và bạn Thịnh gieo một con xúc xắc cân đối. Tính xác suất của các biến cố sau: a) E: “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc lớn hơn 3”; b) F: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc lớn hơn 3”.
Đề bài
Bạn Bình gieo một đồng xu cân đối và bạn Thịnh gieo một con xúc xắc cân đối. Tính xác suất của các biến cố sau:
a) E: “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc lớn hơn 3”;
b) F: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc lớn hơn 3”.
Phương pháp giải - Xem chi tiết
Cách tính xác suất của một biến cố E:
Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \).
Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng.
Bước 3. Mô tả kết quả thuận lợi của biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E.
Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \).
Lời giải chi tiết
Kết quả của phép thử là (a, b) trong đó a và b tương ứng là số chấm trên con xúc xắc và mặt đồng xu.
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Mỗi ô ở bảng là một kết quả có thể. Có 12 kết quả có thể là đồng khả năng nên số phần tử của không gian mẫu là 12.
a) Có 3 kết quả thuận lợi cho biến cố E là: (5, S); (4, S); (6, S). Vậy\(P\left( E \right) = \frac{3}{{12}} = \frac{1}{4}\).
b) Có 9 kết quả thuận lợi cho biến cố F là: (1, N); (2, N); (3, N); (4, N); (5, N); (6, N); (5, S); (4, S); (6, S). Vậy \(P\left( F \right) = \frac{9}{{12}} = \frac{3}{4}\).