Giải bài 9.54 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 2
Cho đa giác đều H có 12 cạnh, nội tiếp một đường tròn (O). Kẻ các đoạn thẳng nối O với các đỉnh của H và thu được 12 góc nhọn tại đỉnh O (không chồng lên nhau). a) Chứng tỏ rằng mỗi góc nhọn này có số đo bằng ({30^o}). b) Hãy chỉ ra 12 phép quay giữ nguyên H.
Đề bài
Cho đa giác đều H có 12 cạnh, nội tiếp một đường tròn (O). Kẻ các đoạn thẳng nối O với các đỉnh của H và thu được 12 góc nhọn tại đỉnh O (không chồng lên nhau).
a) Chứng tỏ rằng mỗi góc nhọn này có số đo bằng \({30^o}\).
b) Hãy chỉ ra 12 phép quay giữ nguyên H.
Phương pháp giải - Xem chi tiết
a) Mỗi góc nhọn tại đỉnh O nói ở trên là một góc ở tâm của (O) và chắn một cung bằng \(\frac{1}{{12}}\) đường tròn, do đó mỗi góc nhọn này có số đo bằng \(\frac{{{{360}^o}}}{{12}} = {30^o}\).
b) Một phép quay được gọi là giữ nguyên một đa giác đều H nếu phép quay đó biến mỗi điểm của H thành một điểm của H.
Lời giải chi tiết
a) Các đoạn thẳng nối O với các đỉnh của H và thu được 12 góc nhọn tại đỉnh O (không chồng lên nhau). Mỗi góc nhọn này là một góc ở tâm của (O) và chắn một cung bằng \(\frac{1}{{12}}\) đường tròn, do đó mỗi góc nhọn này có số đo bằng \(\frac{{{{360}^o}}}{{12}} = {30^o}\).
b) 12 phép quay giữ nguyên H là các phép quay thuận chiều lần lượt 30 o , 60 o , 90 o , 120 o , 150 o , 180 o , 210 o , 240 o , 270 o , 300 o , 330 o , 360 o với tâm O.