Processing math: 7%

Giải bài tập 1. 5 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải bài tập 1.5 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức

Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số (Nleft( t right) = frac{{25t + 10}}{{t + 5}},t ge 0), trong đó N(t) được tính bằng nghìn người. a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và (mathop {lim }limits_{t to + infty } Nleft( t right)). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.

Đề bài

Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số N(t)=25t+10t+5,t0, trong đó N(t) được tính bằng nghìn người. a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và lim. Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định lí về tính đồng biến của hàm số để chứng minh: Cho hàm số y = f\left( x \right) có đạo hàm trên khoảng K. Nếu f'\left( x \right) > 0 với mọi x \in K thì hàm số f\left( x \right) đồng biến trên khoảng K.

Lời giải chi tiết

a) Dân số của thị trấn đó vào năm 2000 là: N\left( 0 \right) = \frac{{25.0 + 10}}{{0 + 5}} = \frac{{10}}{5} = 2 (nghìn người).

Dân số của thị trấn đó vào năm 2015 là: N\left( {15} \right) = \frac{{25.15 + 10}}{{15 + 5}} = 19,25 (nghìn người).

b) Ta có:

\mathop {\lim }\limits_{t \to  + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{25t + 10}}{{t + 5}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{25 + \frac{{10}}{t}}}{{1 + \frac{5}{t}}} = 25.

N'(t) = \left[ {\frac{{25t + 10}}{{t + 5}}} \right]' = \frac{{(25t + 10)'(t + 5) - (25t + 10)(t + 5)'}}{{{{(t + 5)}^2}}}

= \frac{{25(t + 5) - (25t + 10)}}{{{{(t + 5)}^2}}} = \frac{{115}}{{{{(t + 5)}^2}}} > 0 \forall t \in D.

\mathop {\lim }\limits_{t \to  + \infty } N\left( t \right) = 25 và N'(t) > 0 nên dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua ngưỡng 25 nghìn người.


Cùng chủ đề:

Giải bài tập 1 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 1. 1 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 2 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 3 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 4 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 5 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 6 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 9 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 10 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức