Processing math: 100%

Giải bài tập 1. 6 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải bài tập 1.6 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Đồ thị của đạo hàm bậc nhất (y = f'left( x right)) của hàm số f(x) được cho trong Hình 1.13: a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích. b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.

Đề bài

Đồ thị của đạo hàm bậc nhất y=f(x) của hàm số f(x) được cho trong Hình 1.13: a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích. b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính đồng biến, nghịch biến của hàm số để tìm khoảng đồng biến, nghịch biến: Cho hàm số y=f(x) có đạo hàm trên khoảng K.

+ Nếu f(x)>0 với mọi xK thì hàm số f(x) đồng biến trên khoảng K.

+ Nếu f(x)<0 với mọi xK thì hàm số f(x) nghịch biến trên khoảng K.

Sử dụng kiến thức về định lí cực trị hàm số để giải: Giả sử hàm số y=f(x) liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a;x0)(x0;b). Khi đó:

+ Nếu f(x)<0 với mọi x(a;x0)f(x)>0 với mọi x(x0;b) thì điểm x0 là một điểm cực tiểu của hàm số f(x).

+ Nếu f(x)>0 với mọi x(a;x0)f(x)<0 với mọi x(x0;b) thì điểm x0 là một điểm cực đại của hàm số f(x).

Lời giải chi tiết

a) Vì f(x)>0 khi x(2;4)x(6;+). Do đó, hàm số f(x) đồng biến trên (2;4)(6;+).

f(x)<0 khi x(0;2)x(4;6). Do đó, hàm số f(x) nghịch biến trên (0;2)(4;6).

b) Vì f(x)<0 với mọi x(0;2)f(x)>0 với mọi x(2;4) nên x=2 là một điểm cực tiểu của hàm số f(x).

f(x)>0 với mọi x(2;4)f(x)<0 với mọi x(4;6) nên điểm x=4 là một điểm cực đại của hàm số f(x).

f(x)<0 với mọi x(4;6)f(x)>0 với mọi x(6;+) nên điểm x=6 là một điểm cực tiểu của hàm số f(x).


Cùng chủ đề:

Giải bài tập 1. 1 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 2 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 3 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 4 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 5 trang 13 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 6 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 9 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 10 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 11 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức