Giải bài tập 1 trang 64 SGK Toán 9 tập 2 - Cánh diều
Nếu ({x_1},{x_2})là hai nghiệm của phương trình (a{x^2} + bx + c = 0(a ne 0)) thì: a) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) b) ({x_1} + {x_2} = frac{c}{a};{x_1}.{x_2} = - frac{b}{a}) c) ({x_1} + {x_2} = frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) d) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = frac{c}{a})
Đề bài
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:
a) \({x_1} + {x_2} = - \frac{b}{a};{x_1}.{x_2} = - \frac{c}{a}\)
b) \({x_1} + {x_2} = \frac{c}{a};{x_1}.{x_2} = - \frac{b}{a}\)
c) \({x_1} + {x_2} = \frac{b}{a};{x_1}.{x_2} = - \frac{c}{a}\)
d) \({x_1} + {x_2} = - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)
Phương pháp giải - Xem chi tiết
Nhớ lại lý thuyết của Định lý Viète.
Lời giải chi tiết
Đáp án d)
Cùng chủ đề:
Giải bài tập 1 trang 64 SGK Toán 9 tập 2 - Cánh diều