Giải bài tập 2 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Giải bài tập 2 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo

Giải các hệ phương trình a) (left{ {begin{array}{*{20}{c}}{4x + y = 2}\{frac{4}{3}x + frac{1}{3}y = 1}end{array}} right.) b) (left{ {begin{array}{*{20}{c}}{x - ysqrt 2 = 0}\{2x + ysqrt 2 = 3}end{array}} right.) c) (left{ {begin{array}{*{20}{c}}{5xsqrt 3 + y = 2sqrt 2 }\{xsqrt 6 - ysqrt 2 = 2}end{array}} right.) d) (left{ {begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\{(x + y) + 2(x - y) = 5}end{array}} right.)

Đề bài

Giải các hệ phương trình

a) \(\left\{ {\begin{array}{*{20}{c}}{4x + y = 2}\\{\frac{4}{3}x + \frac{1}{3}y = 1}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y\sqrt 2 = 0}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 3 + y = 2\sqrt 2 }\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

d) \(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{(x + y) + 2(x - y) = 5}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

Dựa vào các bước giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết

a) \(\left\{ {\begin{array}{*{20}{c}}{4x + y = 2}\\{\frac{4}{3}x + \frac{1}{3}y = 1}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 2 - 4x}\\{\frac{4}{3}x + \frac{1}{3}\left( {2 - 4x} \right) = 1}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 2 - 4x}\\{0x = \frac{1}{3}}\end{array}} \right.\end{array}\)

Phương trình 0x = \(\frac{1}{3}\) vô nghiệm.

Vậy hệ phương trình vô nghiệm.

b) \(\left\{ {\begin{array}{*{20}{c}}{x - y\sqrt 2 = 0}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\)

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{3x = 3}\\{2x + y\sqrt 2 = 3}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{2 + y\sqrt 2 = 3}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y\sqrt 2 = 1}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = \frac{1}{{\sqrt 2 }}}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {1;\frac{1}{{\sqrt 2 }}} \right)\).

c) \(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 3 + y = 2\sqrt 2 }\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

Nhân hai vế của phương trình thứ nhất với \(\sqrt 2 \), ta được

\(\left\{ {\begin{array}{*{20}{c}}{5x\sqrt 6 + y\sqrt 2 = 4}\\{x\sqrt 6 - y\sqrt 2 = 2}\end{array}} \right.\)

Cộng từng vế 2 phương trình của hệ, ta được \(6\sqrt 6 x = 6\) , suy ra x = \(\frac{1}{{\sqrt 6 }}\).

Thay x = \(\frac{1}{{\sqrt 6 }}\) vào phương trình \(x\sqrt 6 - y\sqrt 2 = 2\) ta được \(1 - y\sqrt 2 = 2\). Do đó,

y = \(\frac{{ - 1}}{{\sqrt 2 }}\).

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {\frac{1}{{\sqrt 6 }};\frac{{ - 1}}{{\sqrt 2 }}} \right)\).

d) \(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{(x + y) + 2(x - y) = 5}\end{array}} \right.\)

Nhân hai vế phương trình thứ hai với 2, ta được

\(\left\{ {\begin{array}{*{20}{c}}{2(x + y) + 3(x - y) = 4}\\{2(x + y) + 4(x - y) = 10}\end{array}} \right.\)

Trừ từng vế 2 phương trình của hệ, ta được – (x – y) = - 6 , suy ra (x – y) = 6 (1)

Thay x – y = 6 vào phương trình 2(x + y) + 3(x – y) = 4 ta được 2(x + y) + 18 = 4

Suy ra x + y = - 7 (2)

Từ (1) và (2) ta có hệ phương trình

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x + y = - 7}\\{x - y = 6}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{6 + y + y = - 7}\\{x = 6 + y}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = \frac{{ - 13}}{2}}\\{x = \frac{{ - 1}}{2}}\end{array}} \right.\end{array}\)

Vậy hệ phương trình có nghiệm duy nhất là \(\left( {\frac{{ - 1}}{2};\frac{{ - 13}}{2}} \right)\).


Cùng chủ đề:

Giải bài tập 2 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 10 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 14 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 21 (BTCC) SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 21 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 22 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 28 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 30 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 34 SGK Toán 9 tập 1 - Chân trời sáng tạo