Giải bài tập 4 trang 92 SGK Toán 9 tập 1 - Cánh diều — Không quảng cáo

Toán 9 cánh diều


Giải bài tập 4 trang 92 SGK Toán 9 tập 1 - Cánh diều

Một người đứng ở vị trí (B) trên bờ sông muốn sử dụng la bàn để ước lượng khoảng cách từ vị trí đó đến một vị trí (A) ở trên một cù lao giữa dòng sông. Người đó đã làm như sau: - Sử dụng la bàn, xác định được phương (BA) lệch với phương Nam – Bắc về hướng Đông (52^circ ). - Người đó di chuyển đến vị trí (C), cách (B) một khoảng là 187m. Sử dụng la bàn, xác định được phương (CA) lệch với phương Nam – Bắc về hướng Tây (27^circ ); (CB) lệch với phương Nam – Bắc về hướng Tây

Đề bài

Một người đứng ở vị trí \(B\) trên bờ sông muốn sử dụng la bàn để ước lượng khoảng cách từ vị trí đó đến một vị trí \(A\) ở trên một cù lao giữa dòng sông. Người đó đã làm như sau:

- Sử dụng la bàn, xác định được phương \(BA\) lệch với phương Nam – Bắc về hướng Đông \(52^\circ \).

- Người đó di chuyển đến vị trí \(C\), cách \(B\) một khoảng là 187m. Sử dụng la bàn, xác định được phương \(CA\) lệch với phương Nam – Bắc về hướng Tây \(27^\circ \); \(CB\) lệch với phương Nam – Bắc về hướng Tây \(70^\circ \) (Hình 42).

Em hãy giúp người đó tính khoảng cách \(AB\) từ những dữ liệu trên (làm tròn kết quả đến hàng đơn vị của mét).

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

Lấy B’B, C’C là các đường thẳng biểu diễn phương Nam – Bắc như hình vẽ.

Theo bài ra ta có \(\widehat {B'BA} = 52^\circ ,\widehat {C'CA} = 27^\circ ,\widehat {C'CB} = 70^\circ \) suy ra \(\widehat {ACB} = \widehat {C'CB} - \widehat {C'CA} = 70^\circ  - 27^\circ  = 43^\circ \).

Kẻ AA’ ( \(A' \in BC\)) song song với phương Nam – Bắc, khi đó \(AA'//BB'//CC'\).

Vì \(AA'//BB'//CC'\) nên ta có \(\widehat {B'BA} = \widehat {BAA'} = 52^\circ \) (hai góc so le trong) và \(\widehat {A'AC} = \widehat {C'CA} = 27^\circ \) suy ra \(\widehat {BAC} = \widehat {BAA'} + \widehat {A'AC} = 52^\circ  + 27^\circ  = 79^\circ \).

Kẻ \(BH \bot AC\left( {H \in AC} \right)\).

Xét \(\Delta BHC\) vuông tại H có: \(\sin C = \frac{{BH}}{{BC}}\) suy ra \(BH = \sin C.BC = \sin 43^\circ .187 \approx 128\left( m \right)\).

Xét \(\Delta BAH\) vuông tại H có: \(\sin A = \frac{{BH}}{{BA}}\) suy ra \(BA = \frac{{BH}}{{\sin A}} \approx \frac{{128}}{{\sin 79^\circ }} \approx 130\left( m \right)\)

Vậy khoảng cách AB là khoảng 130m.


Cùng chủ đề:

Giải bài tập 4 trang 85 SGK Toán 9 tập 2 - Cánh diều
Giải bài tập 4 trang 87 SGK Toán 9 tập 1 - Cánh diều
Giải bài tập 4 trang 89 SGK Toán 9 tập 2 - Cánh diều
Giải bài tập 4 trang 90 SGK Toán 9 tập 2 - Cánh diều
Giải bài tập 4 trang 91 SGK Toán 9 tập 1 - Cánh diều
Giải bài tập 4 trang 92 SGK Toán 9 tập 1 - Cánh diều
Giải bài tập 4 trang 97 SGK Toán 9 tập 2 - Cánh diều
Giải bài tập 4 trang 100 SGK Toán 9 tập 1 - Cánh diều
Giải bài tập 4 trang 103 SGK Toán 9 tập 2 - Cánh diều
Giải bài tập 4 trang 104 SGK Toán 9 tập 1 - Cánh diều
Giải bài tập 4 trang 108 SGK Toán 9 tập 2 - Cánh diều