Giải bài tập 5 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 5 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2\sqrt {1 - {x^2}} + {x^2}\)

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2\sqrt {1 - {x^2}}  + {x^2}\)

Phương pháp giải - Xem chi tiết

tìm tập xác định, tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất

Lời giải chi tiết

Tập xác định: \(D = [ - 1;1]\)

\(y' = \frac{{ - 2x}}{{\sqrt {1 - {x^2}} }} + 2x = 0 \Leftrightarrow x = 0\)

Tập xác định mới: \({D_1} = ( - 1;1)\)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D y = y(0) = 2\) và \(\mathop {\min }\limits_D y = y( - 1) = y(1) = 1\)


Cùng chủ đề:

Giải bài tập 4 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 4 trang 83 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 4 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 5 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 5 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 5 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 5 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 5 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 5 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 5 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo